NNStreamer

Overview

NNStreamer is a set of GStreamer plugins that allow GStreamer developers to adopt neural network models, and neural network developers to manage neural network pipelines with their filters in a easy and efficient way.

It provides the new GStreamer stream data type and a set of GStreamer elements (plugins) to construct media stream pipeline with neural network models. It supports various well-known neural network frameworks including Tensorflow, Tensorflow-lite, Caffe2, PyTorch, OpenVINO and ArmNN. All the details are well-documented on the NNStreamer Official Documentation.

Users may include custom C functions, C++ objects, or Python objects as well as such frameworks as neural network filters of a pipeline in run-time and also add and integrate support for such frameworks or hardware AI accelerators in run-time, which may exist as independent plugin binaries.

Important

IoT Yocto only have demo examples for Tensorflow-lite backend and MTK Neuron backend due to the machine learning software stack limitation.

Here comes the illustration of software stack for the NNStreamer on IoT Yocto.

../_images/tools_nnstreamer_software-stack.png

NNStreamer on IOT Yocto

The software stack for machine learning on IoT Yocto provides various backend-accelerator approach for the developer. Also, TensorflowLite Stable Delegate is also available as experimental function since v24.0. User will be able to run the inference with online Neuron Stable Delegate on MTK’s powerful APU.

Table 2. Software Stack on IoT Yocto

Software Stack

Backend

Genio 350-EVK

Genio 510-EVK

Genio 700-EVK

Genio 1200-EVK

Tensorflow-Lite

CPU

V

V

V

V

Tensorflow-Lite + GPU delegate

GPU

V

V

V

V

Tensorflow-Lite + ARMNN Delegate

GPU, CPU

V

V

V

V

Tensorflow-Lite + NNAPI Delegate

VPU

V

X

X

X

Tensorflow-Lite + Neuron Stable Delegate

MDLA, VPU

X

V

V

V

Neuron SDK

MDLA, VPU

X

V

V

V

Important

Tensorflow official website still mark Stable Delegate as experimental API by the time of Yocto v24.0 Release (6/2024).

In v24.0 release, stable delegate is a demo-only feature. It won’t be officially supported for the function correctness.

NNStreamer::tensor_filter

The NNStramer plugin - tensor_filter plays a important role on the whole NNStreamer project. It acts as a bridge between GStreamer data stream and neural network frameworks such as Tensorflow-lite, which process the data stream to be the neural-network-accepted format and also run the model inference. Like a typical GStreamer plugin, the command gst-inspect-1.0 will show the details of plugin information for tensor_filter:

gst-inpsect-1.0 tensor_filter
...
        Pad Templates:
    SINK template: 'sink'
        Availability: Always
        Capabilities:
        other/tensor
                framerate: [ 0/1, 2147483647/1 ]
        other/tensors
                    format: { (string)static, (string)flexible }
                framerate: [ 0/1, 2147483647/1 ]

    SRC template: 'src'
        Availability: Always
        Capabilities:
        other/tensor
                framerate: [ 0/1, 2147483647/1 ]
        other/tensors
                    format: { (string)static, (string)flexible }
                framerate: [ 0/1, 2147483647/1 ]

    Element has no clocking capabilities.
    Element has no URI handling capabilities.

    Pads:
    SINK: 'sink'
        Pad Template: 'sink'
    SRC: 'src'
        Pad Template: 'src'

    Element Properties:
    accelerator         : Set accelerator for the subplugin with format (true/false):(comma separated ACCELERATOR(s)). true/false determines if accelerator is to be used. list of accelerators determines the backend (ignored with false). Example, if GPU, NPU can be used but not CPU - true:npu,gpu,!cpu. The full list of accelerators can be found in nnstreamer_plugin_api_filter.h. Note that only a few subplugins support this property.
                            flags: readable, writable
                            String. Default: ""
    custom              : Custom properties for subplugins ?
                            flags: readable, writable
                            String. Default: ""
    framework           : Neural network framework
                            flags: readable, writable
                            String. Default: "auto"
    input               : Input tensor dimension from inner array, up to 4 dimensions ?
                            flags: readable, writable
                            String. Default: ""
    input-combination   : Select the input tensor(s) to invoke the models
                            flags: readable, writable
                            String. Default: ""
    inputlayout         : Set channel first (NCHW) or channel last layout (NHWC) or None for input data. Layout of the data can be any or NHWC or NCHW or none for now.
                            flags: readable, writable
                            String. Default: ""
    inputname           : The Name of Input Tensor
                            flags: readable, writable
                            String. Default: ""
    inputranks          : The Rank of the Input Tensor, which is separated with ',' in case of multiple Tensors
                            flags: readable
                            String. Default: ""
    inputtype           : Type of each element of the input tensor ?

...

Tensorflow-Lite Framework

Users can be able to construct GStreamer streaming pipeline by using the existing tensor_filter_tensorflow_lite. Examples of using the Tensorflow-Lite framework can be found in NNStreamer-Example.

Some properties like neural network framework and model path are required by user input when you are like to use tensor_filter_tensorflow_lite. But there is no need to pass the model meta information such as input/output type and input/output dimension because these properties in the model are properly handled by the tensor_filter_tensorflow_lite.

Here is an pipeline snippets for tensor_filter using Tensorflow-Lite framework. Please visit NNStreamer-Example to get full examples.

... tensor_converter ! \
tensor_filter framework=tensorflow-lite model=/usr/bin/nnstreamer-demo/mobilenet_v1_1.0_224_quant.tflite custom=NumThreads:8 ! \
...

Neuron Framework

IoT Yocto designed a tensor_filter which supports Neuron SDK. Users can be able to use tensor_filter_neuronsdk to create GStreamer streaming pipeline that leverage Genio platform’s powerful AI hardware accelerator. The source implementation of the tensor_filter_neuronsdk in IoT Yocto NNStreamer repository ($BUILD_DIR/tmp/work/armv8a-poky-linux/nnstreamer/$PV/git/ext/nnstreamer/tensor_filter/tensor_filter_neuronsdk.cc).

Different from Tensorflow-Lite framework, all the model properties neural network framework, model path also input/output type and input/output dimension are required by user input when you are like to use tensor_filter_neuronsdk. All the model information are hidden in the DLA file for the security concern, it’s important that user should have comprehensive realization for their own model.

Here is an pipeline snippets for tensor_filter using the Neuron SDK:

...  tensor_converter ! \
tensor_filter framework=neuronsdk model=/usr/bin/nnstreamer-demo/mobilenet_v1_1.0_224_quant.dla inputtype=uint8 input=3:224:224:1 outputtype=uint8 output=1001:1 ! \
...

Note

The tensor_filter properties related to input/output type and dimension are as follows:

  • inputtype: Type of each element of the input tensor.

  • inputlayout: Set channel first (NCHW) or channel last layout (NHWC) or None for input data.

  • input: Input tensor dimension from inner array, up to 4 dimensions.

  • outputtype: Type of each element of the output tensor.

  • outputlayout: Set channel first (NCHW) or channel last layout (NHWC) or None for output data.

  • output: Output tensor dimension from inner array, up to 4 dimensions.

Get more details for tensor_filter from the NNstreamer online document and the source code.

NNStreamer Unit Test

NNStreamer provides gtest based test suite for common library and NNStreamer plugins. Run the unit tests by following command to gain an insight into the integration status of NNStreamer on IoT Yocto.

cd /usr/bin/unittest-nnstreamer/
ssat
...
==================================================

[PASSED] transform_typecast (37 passed among 39 cases)
[PASSED] nnstreamer_filter_neuronsdk (8 passed among 8 cases)
[PASSED] transform_dimchg (13 passed among 13 cases)
[PASSED] nnstreamer_decoder_pose (3 passed among 3 cases)
[PASSED] nnstreamer_decoder_boundingbox (15 passed among 15 cases)
[PASSED] transform_clamp (10 passed among 10 cases)
[PASSED] transform_stand (9 passed among 9 cases)
[PASSED] transform_arithmetic (36 passed among 36 cases)
[PASSED] nnstreamer_decoder (17 passed among 17 cases)
[PASSED] nnstreamer_filter_custom (23 passed among 23 cases)
[PASSED] transform_transpose (16 passed among 16 cases)
[PASSED] nnstreamer_filter_tensorflow2_lite (31 passed among 31 cases)
[PASSED] nnstreamer_repo_rnn (2 passed among 2 cases)
[PASSED] nnstreamer_converter (32 passed among 32 cases)
[PASSED] nnstreamer_repo_dynamicity (10 passed among 10 cases)
[PASSED] nnstreamer_mux (84 passed among 84 cases)
[PASSED] nnstreamer_split (21 passed among 21 cases)
[PASSED] nnstreamer_repo (77 passed among 77 cases)
[PASSED] nnstreamer_demux (43 passed among 43 cases)
[PASSED] nnstreamer_filter_python3 (0 passed among 0 cases)
[PASSED] nnstreamer_rate (17 passed among 17 cases)
[PASSED] nnstreamer_repo_lstm (2 passed among 2 cases)
==================================================
[PASSED] All Test Groups (23) Passed!
        TC Passed: 595 / Failed: 0 / Ignored: 2

Some test cases which marked with “Ignored” are not invoked because they didn’t implement runTest.sh in its test directory that is required by ssat. Though the integration status can be acquired by it’s own unit test execution binary.

Here takes ArmNN unit test as an example.

cd /usr/bin/unittest-nnstreamer/tests/
export NNSTREAMER_SOURCE_ROOT_PATH=/usr/bin/unittest-nnstreamer/
./unittest_filter_armnn
...
[==========] 13 tests from 1 test suite ran. (141 ms total)
[  PASSED  ] 13 tests.

NNStreamer Pipeline Examples

IoT Yocto provides some python examples in /usr/bin/nnstreamer-demo/ to demonstrate how to create a NNStreamer pipeline with different configuration on tensor_filters for various use cases. The examples are modified from NNStreamer-Example.

Table Features of NNStreamer Examples

Category

Input Source

Python script

Demo Runner

run_nnstreamer_example.py

Image Classification

Camera

nnstreamer_example_image_classification.py

Object Detection

Camera

nnstreamer_example_object_detection.py

Object Detection

Camera

nnstreamer_example_object_detection_yolov5.py

Pose Estimation

Camera

nnstreamer_example_pose_estimation.py

Face Detection

Camera

nnstreamer_example_face_detection.py

Monocular Depth Estimation

Camera

nnstreamer_example_monocular_depth_estimation.py

Image Enhancement

Image

nnstreamer_example_low_light_image_enhancement.py

Each application could be run separately with it’s own python script but here we strongly suggest that users run the application via Demo Runner run_nnstreamer_example.py. Users can easily change the target application by simply modifying argument rather than constructing complicated command.

The remaining part of this section, we are going to use run_nnstreamer_example.py to go through the demo process. Use --help to list all available options of it.

python3 run_nnstreamer_example.py --help
usage: run_nnstreamer_example.py [-h] [--app {image_classification,object_detection,object_detection_yolov5,face_detection,pose_estimation,low_light_image_enhancement,monocular_depth_estimation}]
                             [--engine {neuronsdk,tflite,armnn}] [--img IMG] [--cam CAM] --cam_type {uvc,yuvsensor,rawsensor} [--width WIDTH] [--height HEIGHT] [--performance {0,1}]
                             [--fullscreen {0,1}] [--throughput {0,1}] [--rot ROT]

options:
-h, --help            show this help message and exit
--app {image_classification,object_detection,object_detection_yolov5,face_detection,pose_estimation,low_light_image_enhancement,monocular_depth_estimation}
                    Choose a demo app to run. Default: image_classification
--framework {neuronsdk,tflite}
                    Choose a framework to run the pipeline. Default: neuronsdk
--engine {armnn,neuron_stable,nnapi}
                    Choose a engine for tflite framework to run the pipeline.
                    If no engine is specified, the inference will run on CPU.
                    Note 1: nnapi is available only on Genio-350
                    Note 2: neuron_stable is NOT available on Genio-350

--img IMG           Input a image file path.
                    Example: /usr/bin/nnstreamer-demo/original.png
                    Note: This paramater is dedicated to low light enhancement app
--cam CAM           Input a camera node id, ex: 130 .
                    Use 'v4l2-ctl --list-devices' query camera node id.
                    Example:
                    $ v4l2-ctl --list-devices
                        ...
                        C922 Pro Stream Webcam (usb-11290000.xhci-1.2):
                        /dev/video130
                        /dev/video131
                        ...
                    Note: This paramater was designed for all the apps except low light enhancement app.
--cam_type {uvc,yuvsensor,rawsensor}
                    Choose correct type of camera being used for the demo, ex: yuvsensor
                    Note: This paramater was designed for all the apps except low light enhancement app.
--width WIDTH       Width for showing on display, ex: 640
--height HEIGHT     Height for showing on display, ex: 480
--performance {0,1} Enable to make CPU/GPU/APU run under performance mode, ex: 1
--fullscreen {0,1}  Fullscreen preview.
                    1: Enable
                    0: Disable
                    Note: This paramater is for all the apps except low light enhancement app.
--throughput {0,1}  Print throughput information.
                    1: Enable
                    0: Disable
--rot ROT           Rotate the camera image by degrees, ex: 90
                    Note: This paramater is for all the apps except low light enhancement app.

Here goes some fundamental options:

  • --framework:

    IoT Yocto supports tflite and neuronsdk, the former is online inference path and the other is offline inference path. Offline inference path is NOT supported on Genio-350. Please find the details in ML section

  • --engine:

    Choose a engine for tflite framework to run the pipeline. It could be armnn, neuron_stable or nnapi.

    For every python demo script, there exists build_pipeline function that will create tensor_filter with different framework, engine and properties based on user setting.

    Important

    The --engine flag is designed only for online inference path, tflite framework, which supports different hardware accelerator for model inference also has fallback mechanism. The offline inference path neuronsdk can only run the model inference on APU.

    Here are some examples for run_nnstreamer_example.py:

    • --framework tflite or --framework tflite --engine cpu:

      If no engine is specified, the inference will run on CPU
      tensor_filter framework=tensorflow-lite model=/usr/bin/nnstreamer-demo/mobilenet_v1_1.0_224_quant.tflite custom=NumThreads:8
      
      • --framework tflite --engine armnn :

        tensor_filter framework=tensorflow-lite model=/usr/bin/nnstreamer-demo/mobilenet_v1_1.0_224_quant.tflite custom=Delegate:External,ExtDelegateLib:/usr/lib/libarmnnDelegate.so.29.0,ExtDelegateKeyVal:backends#GpuAcc
        
      • --framework tflite --engine stable_delegate :

        tensor_filter framework=tensorflow-lite model=/usr/bin/nnstreamer-demo/mobilenet_v1_1.0_224_quant.tflite custom=Delegate:Stable,StaDelegateSettingFile:/usr/share/label_image/stable_delegate_settings.json,ExtDelegateKeyVal:backends#GpuAcc
        
      • --framework tflite --engine nnapi :

        tensor_filter framework=tensorflow-lite model=/usr/bin/nnstreamer-demo/mobilenet_v1_1.0_224_quant.tflite custom=Delegate:External,ExtDelegateLib:/usr/lib/nnapi_external_delegate.so
        

        Note

        --engine nnapi is only available on Genio-350.

    • --framework neuronsdk :

      The details for the framework were mentioned here.

      tensor_filter framework=neuronsdk model=/usr/bin/nnstreamer-demo/mobilenet_v1_1.0_224_quant.dla inputtype=uint8 input=3:224:224:1 outputtype=uint8 output=1001:1
      
  • --cam: Input a camera node index.

  • --performance:

    Set performance mode for your platform. Select your current platform and set the performance mode for it. It could be

    • --performance 0 : Set the performance mode off

    • --performance 1 : Set the performance mode on

    Performance mode will make the CPU, GPU, and APU running at the highest frequency and disable thermal throttling.

Camera-Input Application

A v4l2-compatible device is required for acting as input source for the following demonstrations.

General Configuration

The examples in this section share some common configurations. It means that users can only change the application option without modifying the shared settings.

Here takes USB webcam as an example. To get correct camera node ID, some methods are provided in the Camera Section, such as

v4l2-ctl --list-devices
    ...
    C922 Pro Stream Webcam (usb-11290000.xhci-1.2):
    /dev/video130
    /dev/video131
    ...

In this case, the camera node ID is /dev/video130.

The common settings for the UVC-camera with enabling the Performance Mode are shown below:

CAM_TYPE=uvc
CAMERA_NODE_ID=130
MODE=1

Note

Users can choose raw sensor or YUV sensor as a input source by assigning the CAM_TYPE, e.g. CAM_TYPE=rawsensor, CAM_TYPE=yuvsensor.

Image Classification

../_images/tools_nnstreamer_examples_image_classification.png
  • Python script: /usr/bin/nnstreamer-demo/nnstreamer_example_image_classification.py

  • Model: mobilenet_v1_1.0_224_quant.tflite

  • Run example:

    1. Set the variable APP to Image Classification application:

      APP=image_classification
      
    2. Choose the framework you like to leverage on:

      • Online inference on tensorflow-lite

        FRAMEWORK=tflite
        
      • Offline inference on neuronsdk

        FRAMEWORK=neuronsdk
        
    3. Choose hardware engine for framework tensorflow-lite:

      Please skip this step for framework neuronsdk.

      • Execute on CPU:

        The process will also run on CPU if no engine is specified.

        ENGINE=cpu
        
      • Execute on GPU through ArmNN delegate:

        ENGINE=armnn
        
      • Execute on MDLA through Stable delegate:

        ENGINE=stable_delegate
        
      • Execute on VPU through NNAPI:

        Note

        --engine nnapi is only available on Genio-350.

        ENGINE=nnapi
        
    4. Run the command:

      • Online inference on tensorflow-lite

        python3 /usr/bin/nnstreamer-demo/run_nnstreamer_example.py --app $APP --cam_type $CAM_TYPE --cam $CAMERA_NODE_ID --framework $FRAMEWORK --engine $ENGINE --performance $MODE
        
      • Offline inference on neuronsdk

        Actually this is as same as the above one but eliminating the --engine argument.

        python3 /usr/bin/nnstreamer-demo/run_nnstreamer_example.py --app $APP --cam_type $CAM_TYPE --cam $CAMERA_NODE_ID --framework $FRAMEWORK --performance $MODE
        
  • Average inference time

    Average inference time of nnstreamer_example_image_classification (UVC)

    CPU

    ARMNN GPU

    Neuron Stable

    NNAPI(VPU)

    NeuronSDK

    Genio-350

    46.3

    40

    Not Supported

    508

    Not Supported

    Genio-510

    8.6

    16.5

    1.6

    Not Supported

    2.3

    Genio-700

    9.4

    13

    1.3

    Not Supported

    2.3

    Genio-1200

    7.3

    9

    1.8

    Not Supported

    2.5

  • Pipeline graph

    Here is the GStreamer pipeline defined in the example nnstreamer_example_image_classification.py with --cam uvc and --framework neuronsdk. The pipeline graph is generated through the gst-report command from gst-instruments tool. The details can be found in Pipeline Profiling:

    gst-launch-1.0 \
    v4l2src name=src device=/dev/video5 io-mode=mmap num-buffers=300 ! video/x-raw,width=640,height=480,format=YUY2 ! tee name=t_raw \
    t_raw. ! queue ! textoverlay name=tensor_res font-desc=Sans,24 ! fpsdisplaysink sync=false video-sink="waylandsink sync=false fullscreen=0" \
    t_raw. ! queue leaky=2 max-size-buffers=2 ! videoconvert ! videoscale ! video/x-raw,width=224,height=224,format=RGB ! tensor_converter ! \
    tensor_filter framework=neuronsdk model=/usr/bin/nnstreamer-demo/mobilenet_v1_1.0_224_quant.dla inputtype=uint8 input=3:224:224:1 outputtype=uint8 output=1001:1 ! \
    tensor_sink name=tensor_sink
    
    ../_images/tools_nnstreamer_examples_pipeline_image_classification.svg

Object Detection

ssd_mobilenet_v2_coco
../_images/tools_nnstreamer_examples_object_detection.png
  • Python script: /usr/bin/nnstreamer-demo/nnstreamer_example_object_detection.py

  • Model: ssd_mobilenet_v2_coco.tflite

  • Run example:

    1. Set the variable APP to Object Detection application:

      APP=object_detection
      
    2. Choose the framework you like to leverage on:

      • Online inference on tensorflow-lite

        FRAMEWORK=tflite
        
      • Offline inference on neuronsdk

        FRAMEWORK=neuronsdk
        
    3. Choose hardware engine for framework tensorflow-lite:

      Please skip this step for framework neuronsdk.

      • Execute on CPU:

        The process will also run on CPU if no engine is specified.

        ENGINE=cpu
        
      • Execute on GPU through ArmNN delegate:

        ENGINE=armnn
        
      • Execute on MDLA through Stable delegate:

        ENGINE=stable_delegate
        
    4. Run the command:

      • Online inference on tensorflow-lite

        python3 /usr/bin/nnstreamer-demo/run_nnstreamer_example.py --app $APP --cam_type $CAM_TYPE --cam $CAMERA_NODE_ID --framework $FRAMEWORK --engine $ENGINE --performance $MODE
        
      • Offline inference on neuronsdk

        Actually this is as same as the above one but eliminating the --engine argument.

        python3 /usr/bin/nnstreamer-demo/run_nnstreamer_example.py --app $APP --cam_type $CAM_TYPE --cam $CAMERA_NODE_ID --framework $FRAMEWORK --performance $MODE
        
  • Average inference time

    Average inference time of nnstreamer_example_object_detection (UVC)

    CPU

    ARMNN GPU

    Neuron Steble Delegate

    NNAPI(VPU)

    NeuronSDK

    Genio-350

    579

    194.5

    Not supported

    Not supported

    Not supported

    Genio-510

    175

    79

    21.5

    Not supported

    22.5

    Genio-700

    164

    60

    15.5

    Not supported

    16.7

    Genio-1200

    121

    39

    12.3

    Not supported

    13

  • Pipeline graph

    Here is the GStreamer pipeline defined in the example nnstreamer_example_object_detections.py with --cam uvc and --framework neuronsdk. The pipeline graph is generated through the gst-report command from gst-instruments tool. The details can be found in Pipeline Profiling:

    gst-launch-1.0 \
    v4l2src name=src device=/dev/video5 io-mode=mmap num-buffers=300 ! video/x-raw,width=640,height=480,format=YUY2 ! tee name=t_raw \
    t_raw. ! queue leaky=2 max-size-buffers=10 ! compositor name=mix sink_0::zorder=1 sink_1::zorder=2 ! fpsdisplaysink sync=false video-sink="waylandsink sync=false fullscreen=0" \
    t_raw. ! queue leaky=2 max-size-buffers=2 ! v4l2convert ! videoscale ! video/x-raw,width=300,height=300,format=RGB ! tensor_converter ! tensor_transform mode=arithmetic option=typecast:float32,add:-127.5,div:127.5 ! queue ! \
    tensor_filter framework=neuronsdk model=/usr/bin/nnstreamer-demo/ssd_mobilenet_v2_coco.dla inputtype=float32 input=3:300:300:1 outputtype=float32,float32 output=4:1:1917:1,91:1917:1 ! \
    tensor_decoder mode=bounding_boxes option1=mobilenet-ssd option2=/usr/bin/nnstreamer-demo/coco_labels_list.txt option3=/usr/bin/nnstreamer-demo/box_priors.txt option4=640:480 option5=300:300 ! queue leaky=2 max-size-buffers=2 ! mix.
    
    ../_images/tools_nnstreamer_examples_pipeline_object_detection.svg
YOLOv5
../_images/tools_nnstreamer_examples_object_detection_yolov5.png
  • Python script: /usr/bin/nnstreamer-demo/nnstreamer_example_object_detection_yolov5.py

  • Model: yolov5s-int8.tflite

  • Run example:

    1. Set the variable APP to Object Detection(YOLOv5s) application:

      APP=object_detection_yolov5
      
    2. Choose the framework you like to leverage on:

      • Online inference on tensorflow-lite

        FRAMEWORK=tflite
        
      • Offline inference on neuronsdk

        FRAMEWORK=neuronsdk
        

      Note

      For offline inference, the YOLOv5 model is only supported on MDLA3.0 (Genio-700/510) , which will got model-converting error on MDLA2.0 (Genio-1200) due to the unsupported operations.

      ncc-tflite --arch mdla2.0 yolov5s-int8.tflite -o yolov5s-int8.dla --int8-to-uint8
      OP[123]: RESIZE_NEAREST_NEIGHBOR
      ├ MDLA: HalfPixelCenters is unsupported.
      ├ EDMA: unsupported operation
      OP[145]: RESIZE_NEAREST_NEIGHBOR
      ├ MDLA: HalfPixelCenters is unsupported.
      ├ EDMA: unsupported operation
      ERROR: Cannot find an execution plan because of unsupported operations
      ERROR: Fail to compile yolov5s-int8.tflite
      

      That’s the reason why users get failure when running run_nnstreamer_example.py --app object_detection_yolov5 on Genio-1200.

      python3 /usr/bin/nnstreamer-demo/run_nnstreamer_example.py --app object_detection_yolov5 --cam_type uvc --cam 130 --framework neuronsdk --performance 1
      ...
      ERROR: Cannot open the file: /usr/bin/nnstreamer-demo/yolov5s-int8.dla
      ERROR: Cannot set a nullptr compiled network.
      ERROR: Cannot set compiled network.
      ERROR: Runtime loadNetworkFromFile fails.
      ERROR: Cannot initialize runtime pool.
      ...
      
    3. Choose hardware engine for framework tensorflow-lite:

      Please skip this step for framework neuronsdk.

      • Execute on CPU:

        The process will also run on CPU if no engine is specified.

        ENGINE=cpu
        
      • Execute on GPU through ArmNN delegate:

        ENGINE=armnn
        
      • Execute on MDLA through Stable delegate:

        ENGINE=stable_delegate
        
    4. Run the command:

      • Online inference on tensorflow-lite

        python3 /usr/bin/nnstreamer-demo/run_nnstreamer_example.py --app $APP --cam_type $CAM_TYPE --cam $CAMERA_NODE_ID --framework $FRAMEWORK --engine $ENGINE --performance $MODE
        
      • Offline inference on neuronsdk

        Actually this is as same as the above one but eliminating the --engine argument.

        python3 /usr/bin/nnstreamer-demo/run_nnstreamer_example.py --app $APP --cam_type $CAM_TYPE --cam $CAMERA_NODE_ID --framework $FRAMEWORK --performance $MODE
        
  • Average inference time

    Average inference time of nnstreamer_example_object_detection_yolov5 (UVC)

    CPU

    ARMNN GPU

    Neuron Stable

    NNAPI(VPU)

    NeuronSDK

    Genio-350

    295

    140

    Not supported

    Not supported

    Not supported

    Genio-510

    55

    46.5

    5.2

    Not supported

    5.9

    Genio-700

    57

    37.5

    3.6

    Not supported

    4.9

    Genio-1200

    41

    24.5

    27.9

    Not supported

    Not supported

  • Pipeline graph

    Here is the GStreamer pipeline defined in the example nnstreamer_example_object_detection_yolov5.py with --cam uvc and --framework neuronsdk. The pipeline graph is generated through the gst-report command from gst-instruments tool. The details can be found in Pipeline Profiling:

    gst-launch-1.0 \
    v4l2src name=src device=/dev/video5 io-mode=mmap num-buffers=300 ! video/x-raw,width=640,height=480,format=YUY2 ! tee name=t_raw \
    t_raw. ! queue leaky=2 max-size-buffers=10 ! compositor name=mix sink_0::zorder=1 sink_1::zorder=2 ! fpsdisplaysink sync=false video-sink="waylandsink sync=false fullscreen=0" \
    t_raw. ! queue leaky=2 max-size-buffers=2 ! videoconvert ! videoscale ! video/x-raw,width=320,height=320,format=RGB ! tensor_converter ! \
    tensor_filter framework=neuronsdk model=/usr/bin/nnstreamer-demo/yolov5s-int8.dla inputtype=uint8 input=3:320:320:1 outputtype=uint8 output=85:6300:1 ! \
    other/tensors,num_tensors=1,types=uint8,dimensions=85:6300:1:1,format=static ! \
    tensor_transform mode=arithmetic option=typecast:float32,add:-4.0,mul:0.0051498096 ! \
    tensor_decoder mode=bounding_boxes option1=yolov5 option2=/usr/bin/nnstreamer-demo/coco.txt option3=0 option4=640:480 option5=320:320 ! queue leaky=2 max-size-buffers=2 ! mix.
    
    ../_images/tools_nnstreamer_examples_pipeline_object_detection_yolov5.svg

Pose Estimation

../_images/tools_nnstreamer_examples_pose_estimation.png
  • Python script: /usr/bin/nnstreamer-demo/nnstreamer_example_pose_estimation.py

  • Model: posenet_mobilenet_v1_100_257x257_multi_kpt_stripped.tflite

  • Run example:

    1. Set the variable APP to Pose Estimation application:

      APP=pose_estimation
      
    2. Choose the framework you like to leverage on:

      • Online inference on tensorflow-lite

        FRAMEWORK=tflite
        
      • Offline inference on neuronsdk

        FRAMEWORK=neuronsdk
        
    3. Choose hardware engine for framework tensorflow-lite:

      Please skip this step for framework neuronsdk.

      • Execute on CPU:

        The process will also run on CPU if no engine is specified.

        ENGINE=cpu
        
      • Execute on GPU through ArmNN delegate:

        ENGINE=armnn
        
      • Execute on MDLA through Stable delegate:

        ENGINE=stable_delegate
        
    4. Run the command:

      • Online inference on tensorflow-lite

        python3 /usr/bin/nnstreamer-demo/run_nnstreamer_example.py --app $APP --cam_type $CAM_TYPE --cam $CAMERA_NODE_ID --framework $FRAMEWORK --engine $ENGINE --performance $MODE
        
      • Offline inference on neuronsdk

        Actually this is as same as the above one but eliminating the --engine argument.

        python3 /usr/bin/nnstreamer-demo/run_nnstreamer_example.py --app $APP --cam_type $CAM_TYPE --cam $CAMERA_NODE_ID --framework $FRAMEWORK --performance $MODE
        
  • Average inference time

    Average inference time of nnstreamer_example_pose_estimation (UVC)

    CPU

    ARMNN GPU

    Neuron Stable

    NNAPI(VPU)

    NeuronSDK

    Genio-350

    180

    115.3

    Not supported

    Not supported

    Not supported

    Genio-510

    45

    34.5

    6.9

    Not supported

    8.3

    Genio-700

    50

    25

    5.2

    Not supported

    6.5

    Genio-1200

    42

    16.5

    5.7

    Not supported

    6.5

  • Pipeline graph:

    Here is the GStreamer pipeline defined in the example nnstreamer_example_pose_estimation.py with --cam uvc and --framework neuronsdk. The pipeline graph is generated through the gst-report command from gst-instruments tool. The details can be found in Pipeline Profiling:

    gst-launch-1.0 \
    v4l2src name=src device=/dev/video5 io-mode=mmap num-buffers=300 ! video/x-raw,width=640,height=480,format=YUY2 ! tee name=t_raw \
    t_raw. ! queue leaky=2 max-size-buffers=10 ! compositor name=mix sink_0::zorder=1 sink_1::zorder=2 ! fpsdisplaysink sync=false video-sink="waylandsink sync=false fullscreen=0" \
    t_raw. ! queue leaky=2 max-size-buffers=2 ! videoconvert ! videoscale ! video/x-raw,width=257,height=257,format=RGB ! tensor_converter ! tensor_transform mode=arithmetic option=typecast:float32,add:-127.5,div:127.5 ! queue ! \
    tensor_filter framework=neuronsdk model=/usr/bin/nnstreamer-demo/posenet_mobilenet_v1_100_257x257_multi_kpt_stripped.dla inputtype=float32 input=3:257:257:1 outputtype=float32,float32,float32,float32 output=17:9:9:1,34:9:9:1,32:9:9:1,32:9:9:1 ! queue ! \
    tensor_decoder mode=pose_estimation option1=640:480 option2=257:257 option3=/usr/bin/nnstreamer-demo/point_labels.txt option4=heatmap-offset ! queue leaky=2 max-size-buffers=2 ! mix.
    
    ../_images/tools_nnstreamer_examples_pipeline_pose_estimation.svg

Face Detection

../_images/tools_nnstreamer_examples_face_detection.png
  • Python script: /usr/bin/nnstreamer-demo/nnstreamer_example_face_detection.py

  • Model: detect_face.tflite

  • Run example:

    1. Set the variable APP to Face Detection application:

      APP=face_detection
      
    2. Choose the framework you like to leverage on:

      • Online inference on tensorflow-lite

        FRAMEWORK=tflite
        
      • Offline inference on neuronsdk

        FRAMEWORK=neuronsdk
        
    3. Choose hardware engine for framework tensorflow-lite:

      Please skip this step for framework neuronsdk.

      • Execute on CPU:

        The process will also run on CPU if no engine is specified.

        ENGINE=cpu
        
      • Execute on GPU through ArmNN delegate:

        ENGINE=armnn
        
      • Execute on MDLA through Stable delegate:

        ENGINE=stable_delegate
        
    4. Run the command:

      • Online inference on tensorflow-lite

        python3 /usr/bin/nnstreamer-demo/run_nnstreamer_example.py --app $APP --cam_type $CAM_TYPE --cam $CAMERA_NODE_ID --framework $FRAMEWORK --engine $ENGINE --performance $MODE
        
      • Offline inference on neuronsdk

        Actually this is as same as the above one but eliminating the --engine argument.

        python3 /usr/bin/nnstreamer-demo/run_nnstreamer_example.py --app $APP --cam_type $CAM_TYPE --cam $CAMERA_NODE_ID --framework $FRAMEWORK --performance $MODE
        
  • Average inference time

    Average inference time of nnstreamer_example_face_detection (UVC)

    CPU

    ARMNN GPU

    Neuron Stable

    NNAPI(VPU)

    NeuronSDK

    Genio-350

    237

    113.2

    Not support

    Not support

    Not support

    Genio-510

    83

    41.8

    11.2

    Not support

    12.5

    Genio-700

    60

    31

    7.8

    Not support

    9.1

    Genio-1200

    52

    23.4

    5.9

    Not support

    6.8

  • Pipeline graph:

    Here is the GStreamer pipeline defined in the example nnstreamer_example_face_detection.py with --cam uvc and --framework neuronsdk. The pipeline graph is generated through the gst-report command from gst-instruments tool. The details can be found in Pipeline Profiling:

    gst-launch-1.0 \
    v4l2src name=src device=/dev/video5 io-mode=mmap num-buffers=300 ! video/x-raw,width=640,height=480,format=YUY2 ! tee name=t_raw \
    t_raw. ! queue leaky=2 max-size-buffers=10 ! videoconvert ! cairooverlay name=tensor_res ! fpsdisplaysink sync=false video-sink="waylandsink sync=false fullscreen=0" \
    t_raw. ! queue leaky=2 max-size-buffers=2 ! videoconvert ! videoscale ! video/x-raw,width=300,height=300,format=RGB ! tensor_converter ! tensor_transform mode=arithmetic option=typecast:float32,add:-127.5,div:127.5 ! \
    tensor_filter framework=neuronsdk model=/usr/bin/nnstreamer-demo/detect_face.dla inputtype=float32 input=3:300:300:1 outputtype=float32,float32 output=4:1:1917:1,2:1917:1 ! \
    tensor_sink name=res_face
    
    ../_images/tools_nnstreamer_examples_pipeline_face_detection.svg

Monocular Depth Estimation

../_images/tools_nnstreamer_examples_monocular_depth_estimation.png
  • Python script: /usr/bin/nnstreamer-demo/nnstreamer_example_monocular_depth_estimation.py

  • Model: midas.tflite

  • Run example:

    1. Set the variable APP to Face Detection application:

      APP=monocular_depth_estimation
      
    2. Choose the framework you like to leverage on:

      • Online inference on tensorflow-lite

        FRAMEWORK=tflite
        
      • Offline inference on neuronsdk

        FRAMEWORK=neuronsdk
        
    3. Choose hardware engine for framework tensorflow-lite:

      Please skip this step for framework neuronsdk.

      • Execute on CPU:

        The process will also run on CPU if no engine is specified.

        ENGINE=cpu
        
      • Execute on GPU through ArmNN delegate:

        ENGINE=armnn
        
      • Execute on MDLA through Stable delegate:

        ENGINE=stable_delegate
        
      • Execute on VPU through NNAPI:

        Note

        --engine nnapi is only available on Genio-350.

        ENGINE=nnapi
        
    4. Run the command:

      • Online inference on tensorflow-lite

        python3 /usr/bin/nnstreamer-demo/run_nnstreamer_example.py --app $APP --cam_type $CAM_TYPE --cam $CAMERA_NODE_ID --framework $FRAMEWORK --engine $ENGINE --performance $MODE
        
      • Offline inference on neuronsdk

        Actually this is as same as the above one but eliminating the --engine argument.

        python3 /usr/bin/nnstreamer-demo/run_nnstreamer_example.py --app $APP --cam_type $CAM_TYPE --cam $CAMERA_NODE_ID --framework $FRAMEWORK --performance $MODE
        
  • Average inference time

    Average inference time of nnstreamer_example_monocular_depth_estimation (UVC)

    CPU

    ARMNN GPU

    Neuron Stable

    NNAPI(VPU)

    NeuronSDK

    Genio-350

    701

    350

    Not supported

    1822

    Not supported

    Genio-510

    240

    120

    22.7

    Not supported

    23.2

    Genio-700

    158

    87

    16.3

    Not supported

    16.5

    Genio-1200

    144

    62

    33.3

    Not supported

    Not supported

  • Pipeline graph:

    Here is the GStreamer pipeline defined in the example nnstreamer_example_monocular_depth_estimation.py with --cam uvc and --framework neuronsdk. The pipeline graph is generated through the gst-report command from gst-instruments tool. The details can be found in Pipeline Profiling:

    gst-launch-1.0 \
    v4l2src name=src device=/dev/video5 ! video/x-raw,format=YUY2,width=640,height=480 num-buffers=300 ! videoconvert ! videoscale ! \
    video/x-raw,format=RGB,width=256,height=256 ! tensor_converter ! tensor_transform mode=arithmetic option=typecast:float32,add:-127.5,div:127.5 ! \
    tensor_filter latency=1 framework=neuronsdk throughput=0 model=/usr/bin/nnstreamer-demo/midas.dla inputtype=float32 input=3:256:256:1 outputtype=float32 output=1:256:256:1 ! \
    appsink name=sink emit-signals=True max-buffers=1 drop=True sync=False
    
    ../_images/tools_nnstreamer_examples_monocular_depth_estimation.svg

Image-Input Application

A Portable Network Graphics(.png) file is required for acting as input source for the following demonstrations.

General Configuration

The examples in this section share some common configurations. It means that users can only change the application option without modifying the shared settings.

The common settings for the input image with enabling the Performance Mode are shown below:

IMAGE_PATH=/usr/bin/nnstreamer-demo/original.png
IMAGE_WIDTH=600
IMAGE_HEIGHT=400
MODE=1

Low Light Image Enhancement

../_images/tools_nnstreamer_examples_low_light_image_enhancement.svg
  • Python script: /usr/bin/nnstreamer-demo/nnstreamer_example_low_light_image_enhancement.py

  • Model: lite-model_zero-dce_1.tflite

  • Run example:

    The example image (/usr/bin/nnstreamer-demo/original.png) was downloaded from paperswithcode:.

    1. Set the variable APP to Low Light Image Enhancement application:

      APP=low_light_image_enhancement
      
    2. Choose the framework you like to leverage on:

      • Online inference on tensorflow-lite

        FRAMEWORK=tflite
        
      • Offline inference on neuronsdk

        FRAMEWORK=neuronsdk
        
    3. Choose hardware engine for framework tensorflow-lite:

      Please skip this step for framework neuronsdk.

      • Execute on CPU:

        The process will also run on CPU if no engine is specified.

        ENGINE=cpu
        
      • Execute on MDLA through Stable delegate:

        ENGINE=stable_delegate
        
    4. Run the command:

      • Online inference on tensorflow-lite

        python3 /usr/bin/nnstreamer-demo/run_nnstreamer_example.py --app $APP --img $IMAGE_PATH --width $IMAGE_WIDTH --height $IMAGE_HEIGHT --framework $FRAMEWORK --engine $ENGINE --performance $MODE
        
      • Offline inference on neuronsdk

        Actually this is as same as the above one but eliminating the --engine argument.

        python3 /usr/bin/nnstreamer-demo/run_nnstreamer_example.py --app $APP --img $IMAGE_PATH --width $IMAGE_WIDTH --height $IMAGE_HEIGHT --framework $FRAMEWORK --performance $MODE
        

      The light-enhancing image will be saved in the /usr/bin/nnstreamer-demo and named as low_light_enhancement_${FRAMEWORK}_${ENGINE}.png. Users can be able to use the option: --export to name the output image.

    Note

    You will fail to run nnstreamer-demo/run_nnstreamer_example.py --app low_light_image_enhancement with --engine armnn because operator SQUARE is not supported by Arm NN.

    python3 /usr/bin/nnstreamer-demo/run_nnstreamer_example.py --app low_light_image_enhancement --img $IMAGE_PATH --framework tflite --engine armnn --width $IMAGE_WIDTH --height $IMAGE_HEIGHT --performance $MODE
    ...
    INFO: TfLiteArmnnDelegate: Created TfLite ArmNN delegate.
    ERROR: Operator SQUARE [92] is not supported by armnn_delegate.
    ...
    
  • Average inference time

    Average inference time of nnstreamer_example_low_light_image_enhancement

    CPU

    ARMNN GPU

    Neuron Stable

    NNAPI(VPU)

    NeuronSDK

    Genio-350

    3636

    Not supported

    Not supported

    Not supported

    Not supported

    Genio-510

    1215

    Not supported

    229

    Not supported

    101

    Genio-700

    765

    Not supported

    147

    Not supported

    74

    Genio-1200

    644

    Not supported

    144

    Not supported

    79

  • Pipeline graph:

    Here is the GStreamer pipeline defined in the example nnstreamer_example_low_light_image_enhancement.py with --framework neuronsdk. The pipeline graph is generated through the gst-report command from gst-instruments tool. The details can be found in Pipeline Profiling:

    gst-launch-1.0 \
    filesrc location=/usr/bin/nnstreamer-demo/original.png ! pngdec ! videoscale ! videoconvert ! video/x-raw,width=600,height=400,format=RGB ! \
    tensor_converter ! tensor_transform mode=arithmetic option=typecast:float32,add:0,div:255.0 ! \
    tensor_filter framework=neuronsdk model=/usr/bin/nnstreamer-demo/lite-model_zero-dce_1.dla inputtype=float32 input=3:600:400:1 outputtype=float32 output=3:600:400:1 ! \
    tensor_sink name=tensor_sink
    
    ../_images/tools_nnstreamer_examples_pipeline_low_light_image_enhacement.svg

Performance

Inference Time - NNStreamer::tensor_filter Invoke Time

The inference time for each example was measured by the property latency provided by tensor_filter. Here is the source code of property definition:

Turn on performance profiling for the average latency over the recent 10 inferences in microseconds.
Currently, this accepts either 0 (OFF) or 1 (ON). By default, it's set to 0 (OFF).

To enable the latency profiling for each example, users should modify the python script individually with adding latency=1 to the tensor_filter’s property setting.

Take nnstreamer_example_image_classification.py as example:

  1. Edit python script: nnstreamer_example_image_classification.py.

  2. Search for tensor_filter and add latency=1 after it.

    if engine == 'neuronsdk':
        tensor = dla_converter(self.tflite_model, self.dla)
        cmd += f'tensor_filter latency=1 framework=neuronsdk model={self.dla} {tensor} ! '
    elif engine == 'tflite':
        cpu_cores = find_cpu_cores()
        cmd += f'tensor_filter latency=1 framework=tensorflow-lite model={self.tflite_model} custom=NumThreads:{cpu_cores} ! '
    elif engine == 'armnn':
        library = find_armnn_delegate_library()
        cmd += f'tensor_filter latency=1 framework=tensorflow-lite model={self.tflite_model} custom=Delegate:External,ExtDelegateLib:{library},ExtDelegateKeyVal:backends#GpuAcc ! '
    elif engine == 'nnapi':
        library = find_armnn_delegate_library()
        cmd += f'tensor_filter latency=1 framework=tensorflow-lite model={self.tflite_model} custom=Delegate:External,ExtDelegateLib:/usr/lib/nnapi_external_delegate.so ! '
    
  3. Save the python script.

  4. Enable glib log level to all to show the debug messages:

    export G_MESSAGES_DEBUG=all
    
  5. Run the example. You can be able to find the log similar to: Invoke took 2.537 ms, which is regarded as the inference time.

    CAM_TYPE=uvc
    CAMERA_NODE_ID=130
    MODE=1
    FRAMEWORK=neuronsdk
    python3 /usr/bin/nnstreamer-demo/run_nnstreamer_example.py --app image_classification --cam_type $CAM_TYPE --cam $CAMERA_NODE_ID --framework $FRAMEWORK --performance $MODE
    ...
    ...
    
    ** INFO: 03:16:01.589: [/usr/bin/nnstreamer-demo/mobilenet_v1_1.0_224_quant.dla] Invoke took 2.537 ms
    ...
    ...
    

NNStreamer Advanced Pipeline Examples

Pipeline Profiling

IoT Yocto provide gst-instrument as profiling tool for performance analysis and data flow inspection of the GStreamer pipeline.

Here goes two fundamental options:

  • gst-top-1.0:

    It will show the performance report for each element in pipeline.

    gst-top-1.0 \
      gst-launch-1.0 \
      v4l2src name=src device=/dev/video5 io-mode=mmap num-buffers=300 ! video/x-raw,width=640,height=480,format=YUY2 ! tee name=t_raw t_raw. ! queue leaky=2 max-size-buffers=10 ! \
    ...
    
    Got EOS from element "pipeline0".
    Execution ended after 0:00:10.221403924
    Setting pipeline to NULL ...
    Freeing pipeline ...
    ELEMENT                    %CPU   %TIME   TIME
    videoconvert0               13.8   55.3    1.41 s
    videoscale0                  3.7   14.9    379 ms
    tensortransform0             2.2    9.0    228 ms
    fps-display-text-overlay     2.0    8.1    207 ms
    tensordecoder0               0.7    2.8   71.9 ms
    tensorfilter0                0.6    2.3   59.5 ms
    ...
    

    Also save the statistics as a GstTrace file named gst-top.gsttrace

    ls -al *.gsttrace
    -rw-r--r-- 1 root root 11653120 Jan  4 05:23 gst-top.gsttrace
    
  • gst-report:

    It will convert GstTrace file to performance graph in DOT format:

    gst-report-1.0 --dot gst-top.gsttrace | dot -Tsvg > perf.svg
    

    The performance graph of nnstreamer_example_object_detection.py is shown as below. It shows CPU usage, time usage, and execution time among the elements. Users can easily figure out the portion of occupied CPU resource of each element, also of the execution time.

    In this case, the tensor_transform consumed 56.9% of the total execution time because it processes the buffer data conversion with the CPU computation.

    ../_images/tools_nnstreamer_examples_pipeline_object_detection.svg

Note

Please refer to NNstreamer online document: Profiling for details.