YOLOX_s Models

Overview

YOLOX is an anchor-free evolution of the YOLO model, designed to offer a streamlined architecture while delivering enhanced performance. It aims to bridge advancements in research with practical applications in the industry.

Model Conversion Flow

Precondition

Note

For better compatibility, it is recommended to use Python 3.8 when working with these models, as it has higher compatibility with certain libraries and frameworks. Additionally, make sure to use the pip version associated with Python 3.8

  1. Clone the YOLOX Repository

    Start by cloning the YOLOX repository from GitHub:

    git clone https://github.com/Megvii-BaseDetection/YOLOX.git
    cd YOLOX
    
  2. Install Dependencies

    Install the required dependencies and set up the development environment:

    pip install -r requirements.txt
    python3.8 setup.py develop
    

Get Source Model

Follow these steps to set up, download, and convert the YOLOX-S model using PyTorch.

  1. Download the YOLOX-S PyTorch Model:

    Download the pretrained YOLOX-S model from the following command:

    wget https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_s.pth
    
  2. Export the YOLOX-S Model to TorchScript:

    Run the export script to convert the YOLOX-S model to TorchScript format:

    python3.8 tools/export_torchscript.py -n yolox_s -c yolox_s.pth
    

Converting Model for Deployment

Before you begin, ensure that the NeuroPilot Converter Tool is installed. If you haven’t installed it yet, please follow the instructions in the “Install and Verify NeuroPilot Converter Tool” section of the same guide.

Quant8 Conversion Process

  1. Convert to Quantized TFLite format:

The following script demonstrates how to convert the YOLOX model to a quantized TFLite format using the NeuroPilot Converter Tool:

  • Data Generation: A generator function creates random input data, which is used for calibration during the quantization process.

  • Model Loading: The YOLOX model is loaded from a TorchScript file.

  • Quantization: The model is set up for quantization, specifying input value ranges and using the generated calibration data.

  • Conversion: The quantized model is converted to TFLite format and saved as yolox_s_quant.tflite.

python3.8 convert_tflite_quantize.py
import mtk_converter
import numpy as np

def data_gen():
    for i in range(100):
        yield [np.random.randn(1, 3, 640, 640).astype(np.float32)]

converter = mtk_converter.PyTorchConverter.from_script_module_file(
    'yolox.torchscript.pt',  [[1, 3, 640, 640]],
)
converter.quantize = True
converter.input_value_ranges = [(-1.0, 1.0)]
converter.calibration_data_gen = data_gen
_ = converter.convert_to_tflite(output_file='yolox_s_quant.tflite')
  1. Convert to Quantized DLA format:

Warning

The process of converting this model to DLA format may encounter unsupported operations. Before converting, you need to prune the model using the provided script to ensure compatibility with the DLA converter.

Here is an example of how to prune the yolox_s_quant.tflite model using the export_quant_tflite_support_op_6-303_v6.py script:

import mtk_converter

editor = mtk_converter.TFLiteEditor("yolox_s_quant.tflite")
output_file = "yolox_s_quant_tflite_6-303_sdkv6.tflite"
input_names = ["input.32"]  # Specify the input tensor names
output_names = ["1360"]      # Specify the output tensor names
_ = editor.export(output_file=output_file, input_names=input_names, output_names=output_names)

Note

The input_names and output_names specified in this script are based on the example model structure. You need to modify these names according to the input and output tensor names specific to your model. You can inspect the model structure using tools like Netron or TensorFlow utilities to identify the correct tensor names for your model.

Tip

For more detailed information and steps on handling unsupported operations in DLA conversion, please see Unsupported Operations in DLA Conversion (Optional).

  • NeuroPilot SDK tools Download and Convert to DLA:

    1. Download the NeuroPilot SDK All-In-One Bundle:

      Visit the following download page and download the necessary bundle: NeuroPilot Downloads

    2. Extract the Bundle:

      After downloading, extract the bundle using the following command:

      tar zxvf neuropilot-sdk-basic-<version>.tar.gz
      
    3. Set the Environment Variables:

      Set the environment variables to point to the SDK:

      export LD_LIBRARY_PATH=/path/to/neuropilot-sdk-basic-<version>/neuron_sdk/host/lib
      
    4. Convert INT8 TFLite Model to DLA Format:

      Use the NeuroPilot Converter Tool to convert your TFLite model into the DLA format. The following example shows how to convert an INT8 TFLite model to DLA format using the specified architecture (mdla3.0).

      /path/to/neuropilot-sdk-basic-<version>/neuron_sdk/host/bin/ncc-tflite --arch=mdla3.0 yolox_s_quant_tflite_6-303_sdkv6.tflite
      

Note

To ensure compatibility with your device, please download and use NeuroPilot SDK version 6. Other versions might not be fully supported.

FP32 Conversion Process

  1. Convert to FP32 TFLite Format:

The following script demonstrates how to convert the YOLOX model to a non-quantized (FP32) TFLite format:

  • Data Generation: As in the quantization process, a generator function creates random input data for the conversion.

  • Model Loading: The YOLOX model is loaded from a TorchScript file.

  • Conversion: The model is converted to TFLite format without applying quantization, and the output is saved as yolox_s.tflite.

python3.8 convert_tflite.py
import mtk_converter
import numpy as np

def data_gen():
    for i in range(100):
        yield [np.random.randn(1, 3, 640, 640).astype(np.float32)]

converter = mtk_converter.PyTorchConverter.from_script_module_file(
    'yolox.torchscript.pt',  [[1, 3, 640, 640]],
)
converter.input_value_ranges = [(-1.0, 1.0)]
converter.calibration_data_gen = data_gen
_ = converter.convert_to_tflite(output_file='yolox_s.tflite')
  1. Convert to FP32 DLA format:

Warning

The process of converting this model to DLA format may encounter unsupported operations. Before converting, you need to prune the model using the provided script to ensure compatibility with the DLA converter.

Here is an example of how to prune the yolox_s.tflite model using the export_tflite_support_op_6-303_v6.py script:

import mtk_converter

editor = mtk_converter.TFLiteEditor("yolox_s.tflite")
output_file = "yolox_s_tflite_6-303_sdkv6.tflite"
input_names = ["input.32"]
output_names = ["1360"]

_ = editor.export(output_file=output_file, input_names=input_names, output_names=output_names)

Note

The input_names and output_names specified in this script are based on the example model structure. You need to modify these names according to the input and output tensor names specific to your model. You can inspect the model structure using tools like Netron or TensorFlow utilities to identify the correct tensor names for your model.

  • Set the Environment and Convert to DLA:

    1. Set the Environment Variables:

      Set the environment variables to point to the SDK:

      export LD_LIBRARY_PATH=/path/to/neuropilot-sdk-basic-<version>/neuron_sdk/host/lib
      
    2. Convert FP32 TFLite Model to DLA Format:

      Use the NeuroPilot Converter Tool to convert your FP32 TFLite model into the DLA format. The following example shows how to convert an FP32 TFLite model to DLA format using the specified architecture (mdla3.0) and enabling relaxed FP32 operations:

      /path/to/neuropilot-sdk-basic-<version>/neuron_sdk/host/bin/ncc-tflite --arch=mdla3.0 --relax-fp32 yolox_s_tflite_6-303_sdkv6.tflite
      

Model Information

Note

The models and benchmark data mentioned below have been processed using the mtk_converter.

General Information

The following table contains general information about the model. The details, such as input size, FLOPS, and number of parameters, are sourced from the documentation at: YOLOX-s Model.

Property

Value

Category

Classification

Input Size

640x640

FLOPs (G)

26.8

#Params (M)

9.0

Training Framework

PyTorch

Inference Framework

TFLite

Pre-converted Model

Deployable Model

Model Type

Download Link

Supported Backend

Quant8 Model package

Download Quant8

CPU,GPU,ArmNN,Neuron Stable Delegate,NeuronSDK

Float32 Model package

Download Fp32

CPU,GPU,ArmNN,Neuron Stable Delegate,NeuronSDK

Model Properties

  • YOLOX_s-quant8

Inputs

Property

Value

Name

x.2

Tensor

int8[1,3,640,640]

Identifier

318

Quantization

Linear

Quantization Range

-1.0039 ≤ 0.0078 * q ≤ 0.9961

Outputs

Property

Value

Name

1162

Tensor

int8[1,8400,85]

Identifier

98

Quantization

Linear

Quantization Range

-2.1799 ≤ 0.0227 * (q + 32) ≤ 3.6106

  • YOLOX_s-fp32

Inputs

Property

Value

Name

x.2

Tensor

float32[1,3,640,640]

Identifier

111

Outputs

Property

Value

Name

1360

Tensor

float32[1,8400,85]

Identifier

53

Benchmark Results

Note

The benchmark results shown below were measured with performance mode enabled. These numbers are for reference only, as actual performance may vary depending on the hardware and platform used.

Please note the following limitations:

  1. The G350 does not support Neuron Stable Delegate (APU) and APU (MDLA) because the hardware does not yet support these features.

  2. Running models on the G350 using ArmNN inference may result in a crash due to the model size being too large for the platform to handle.

  • YOLOX_s-quant8

Run model (.tflite) 10 times

CPU (Thread:8)

GPU

ARMNN(GpuAcc)

ARMNN(CpuAcc)

Neuron Stable Delegate

NeuronSDK

G350

976.244 ms (Thread:4)

1160.05 ms

703.429 ms

694.960 ms

N/A

N/A

G510

378.448 ms

386.428 ms

217.080 ms

174.013 ms

N/A

22.31 ms

G700

165.861 ms

265.292 ms

150.151 ms

157.308 ms

14.723 ms

15.04 ms

G1200

159.647 ms

179.024 ms

98.150 ms

87.183 ms

24.276 ms

25.05 ms

  • YOLOX_s-fp32

Run model (.tflite) 10 times

CPU (Thread:8)

GPU

ARMNN(GpuAcc)

ARMNN(CpuAcc)

Neuron Stable Delegate

NeuronSDK

G350

2027.11 ms (Thread:4)

1121.93 ms

1046.59 ms

N/A

N/A

N/A

G510

821.662 ms

358.816 ms

341.251 ms

424.459 ms

69.916 ms

62.12 ms

G700

423.192 ms

248.299 ms

234.901 ms

358.942 ms

51.868 ms

44.04 ms

G1200

395.406 ms

161.877 ms

150.498 ms

205.845 ms

57.381 ms

48.05 ms

Run Benchmark Tools

This section will guide you on how to execute the benchmark tool with different delegates and hardware configurations.

  1. First, push your TFLite model to the target device:

adb push <your_tflite_model> /usr/share/label_image/

Make sure to replace <your_tflite_model> with the actual path of your TFLite model.

  1. Next, open an ADB shell to the target device:

adb shell

After this, you can execute the following commands directly from the shell.

Execute on CPU (8 threads)

To execute the benchmark on the CPU using 8 threads, run the following command:

benchmark_model --graph=/usr/share/label_image/<your_tflite_model> --num_threads=8 --num_runs=10

Execute on GPU, with GPU delegate

To execute the benchmark on the GPU using the TensorFlow Lite GPU delegate, run the following command:

benchmark_model --graph=/usr/share/label_image/<your_tflite_model> --use_gpu=1 --allow_fp16=0 --gpu_precision_loss_allowed=0 --num_runs=10

Execute on GPU, with Arm NN delegate

To execute the benchmark on the GPU using the Arm NN delegate, use the following command:

benchmark_model --graph=/usr/share/label_image/<your_tflite_model> --external_delegate_path=/usr/lib/libarmnnDelegate.so.29 --external_delegate_options="backends:GpuAcc" --num_runs=10

Execute on CPU, with Arm NN delegate

To run the benchmark on the CPU using the Arm NN delegate, use the following command:

benchmark_model --graph=/usr/share/label_image/<your_tflite_model> --external_delegate_path=/usr/lib/libarmnnDelegate.so.29 --external_delegate_options="backends:CpuAcc" --num_runs=10

Execute on APU, with Neuron Delegate

For executing on the APU using the Neuron delegate, run the following command:

benchmark_model --stable_delegate_settings_file=/usr/share/label_image/stable_delegate_settings.json --use_nnapi=false --use_xnnpack=false --use_gpu=false --min_secs=20 --graph=/usr/share/label_image/<your_tflite_model>

Note

If you are using the G350 platform, please make the following adjustments:

  • For CPU-based benchmarks, change the –num_threads parameter to 4:

    benchmark_model --graph=/usr/share/label_image/<your_tflite_model> --num_threads=4 --use_xnnpack=0 --num_runs=10
    
  • For all benchmarks (CPU, GPU, Arm NN), add the parameter –use_xnnpack=0 to disable the XNNPACK delegate

Neuron SDK

Follow these steps to benchmark your TensorFlow Lite model using the Neuron SDK with MDLA 3.0:

  1. Transfer the Model to the Device:

    Use adb to push your TFLite model to the device:

    adb push <your_tflite_model> /user/share/benchmark_dla/
    

Note

Make sure to push the pruned model (after using the pruning script) to the device to ensure compatibility with the DLA converter. The pruned model should be used instead of the original model for accurate benchmarking.

  1. Access the Device Shell:

    Connect to your device’s shell:

    adb shell
    
  2. Navigate to the Benchmark Directory:

    Change to the directory where the model is stored:

    cd /user/share/benchmark_dla/
    
  3. Run the Benchmark:

    Execute the benchmarking script with the following command:

    python3 benchmark.py --file <your_tflite_model> --target mdla3.0 --profile --options='--relax-fp32'
    

Description:

  • The benchmark.py script runs a performance evaluation on your model using MDLA 3.0.

  • The –file parameter specifies the path to your TFLite model.

  • The –target mdla3.0 option sets the target hardware to MDLA 3.0.

  • The –profile flag enables profiling to provide detailed performance metrics.

  • The –options=’–relax-fp32’ option allows relaxation of floating-point precision to improve compatibility with MDLA.