YOLOv8s Models

Overview

YOLOv8s is a variant of the YOLOv8 (You Only Look Once version 8) family of object detection models, recognized for its advancements in speed, accuracy, and ease of use. Developed by Ultralytics, YOLOv8 represents the latest iteration in the YOLO series, building upon the successes of previous versions such as YOLOv4 and YOLOv5, with a focus on modern deep learning practices and integration with popular frameworks.

Model Conversion Flow

Precondition

Note

For better compatibility, it is recommended to use Python 3.7 when working with these models, as it has higher compatibility with certain libraries and frameworks.

Before you begin, ensure that the NeuroPilot Converter Tool is installed. If you haven’t installed it yet, please follow the instructions in the “Install and Verify NeuroPilot Converter Tool” section of the same guide.

  1. Clone the YOLOv5 repository:

    The export script needed for conversion is available in the YOLOv5 repository. Clone it using the following command:

    git clone https://github.com/ultralytics/yolov5.git
    cd yolov5
    git reset --hard 485da42
    
  2. Install Python packages and dependencies:

    pip3 install -r requirements.txt
    pip3 install torch==1.9.0 torchvision==0.10.0
    

    Note

    The mtk_converter.PyTorchConverter only supports PyTorch versions between 1.3.0 and 2.0.0. The detected version v2.3.1+cu121 is not within this supported range, causing a runtime error. Therefore, it is necessary to install a compatible version of PyTorch and torchvision to ensure compatibility.

Get Source Model

  1. Download the YOLOv8s model:

    Use the following wget command to download the YOLOv8s model into the YOLOv5 source code directory:

    wget https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s.pt
    
  2. Export the PyTorch model to TorchScript:

    Use the following command to convert the model from PyTorch format to TorchScript:

    python3 export.py --weights yolov8s.pt --img-size 640 640 --include torchscript
    

Converting Model for Deployment

Quant8 Conversion Process

  1. Convert to TFLite format:

The following script demonstrates how to convert the YOLOv8s model to a quantized TFLite format:

  • Data Generation: A generator function creates random input data for calibration.

  • Model Loading: The YOLOv8s model is loaded from a TorchScript file.

  • Quantization: The model is configured for quantization with specified input value ranges.

  • Conversion: The quantized model is converted to TFLite format and saved.

python3 convert_to_tflite_quantized.py
import mtk_converter
import numpy as np

def data_gen():
    for i in range(100):
        yield [np.random.randn(1, 3, 640, 640).astype(np.float32)]

converter = mtk_converter.PyTorchConverter.from_script_module_file(
    'yolov8s.torchscript',  [[1, 3, 640, 640]],
)
converter.quantize = True
converter.input_value_ranges = [(-1.0, 1.0)]
converter.calibration_data_gen = data_gen
_ = converter.convert_to_tflite(output_file='yolov8s_quant.tflite')
  1. Convert to DLA format:

  • NeuroPilot SDK tools Download:

    1. Download NeuroPilot SDK All-In-One Bundle:

      Visit the download page: NeuroPilot Downloads

    2. Extract the Bundle:

      tar zxvf neuropilot-sdk-basic-<version>.tar.gz
      
    3. Setting Environment Variables:

      export LD_LIBRARY_PATH=/path/to/neuropilot-sdk-basic-<version>/neuron_sdk/host/lib
      
    4. TFLite Model convert to DLA format:

      Use the NeuroPilot Converter Tool to convert your TFLite model into the DLA format. The following example shows how to convert an INT8 TFLite model to DLA format using the specified architecture (mdla3.0):

      /path/to/neuropilot-sdk-basic-<version>/neuron_sdk/host/bin/ncc-tflite --arch=mdla3.0 yolov8s_quant.tflite
      

Note

To ensure compatibility with your device, please download and use NeuroPilot SDK version 6. Other versions might not be fully supported.

FP32 Conversion Process

  1. Convert to TFLite format:

The following script demonstrates how to convert the YOLOv8s model to a non-quantized (FP32) TFLite format:

  • Data Generation: Similar to the quantization process, a generator function creates random input data for conversion.

  • Model Loading: The YOLOv8s model is loaded from a TorchScript file.

  • Conversion: The model is converted to TFLite format without quantization and saved.

python3 convert_to_tflite.py
import mtk_converter
import numpy as np

def data_gen():
    for i in range(100):
        yield [np.random.randn(1, 3, 640, 640).astype(np.float32)]

converter = mtk_converter.PyTorchConverter.from_script_module_file(
    'yolov8s.torchscript',  [[1, 3, 640, 640]],
)
converter.input_value_ranges = [(-1.0, 1.0)]
converter.calibration_data_gen = data_gen
_ = converter.convert_to_tflite(output_file='yolov8s.tflite')
  1. Convert to DLA format:

  1. Setting Environment Variables:

    export LD_LIBRARY_PATH=/path/to/neuropilot-sdk-basic-<version>/neuron_sdk/host/lib
    
  2. TFLite Model convert to DLA format:

    Use the NeuroPilot Converter Tool to convert your FP32 TFLite model into the DLA format. The following example shows how to convert an FP32 TFLite model to DLA format using the specified architecture (mdla3.0) and enabling relaxed FP32 operations:

    /path/to/neuropilot-sdk-basic-<version>/neuron_sdk/host/bin/ncc-tflite --arch=mdla3.0 --relax-fp32 yolov8s.tflite
    

Model Information

Note

The models and benchmark data mentioned below have been processed using the mtk_converter.

General Information

The information in the table below is sourced from the Detection section of the ultralytics repository, which can be found at ultralytics repository.

Property

Value

Category

Detection

Input Size

640x640

FLOPs (B)

28.6

#Params (M)

11.2

Training Framework

PyTorch

Inference Framework

TFLite

Pre-converted Model

Deployable Model

Model Type

Download Link

Supported Backend

Quant8 Model package

Download Quant8

CPU,GPU,ARMNN,Neuron Stable Delegage,NeuronSDK

Float32 Model package

Download Fp32

CPU,GPU,ARMNN,Neuron Stable Delegage,NeuronSDK

Model Properties

  • YOLOv8s-quant8

Inputs

Property

Value

Name

input.49

Tensor

int8[1,3,640,640]

Identifier

35

Quantization

Linear

Quantization Range

-1.0039 ≤ 0.0078 * q ≤ 0.9961

Outputs

Property

Value

Name

80

Tensor

int8[1,84,8400]

Identifier

378

Quantization

Linear

Quantization Range

-10.1582 ≤ 2.5395 * (q + 124) ≤ 637.4246

Name

77

Tensor

int8[1,144,80,80]

Identifier

37

Quantization

Linear

Quantization Range

-18.2789 ≤ 0.1115 * (q - 36) ≤ 10.1426

Name

78

Tensor

int8[1,144,40,40]

Identifier

270

Quantization

Linear

Quantization Range

-17.3353 ≤ 0.1008 * (q - 44) ≤ 8.3653

Name

79

Tensor

int8[1,144,20,20]

Identifier

155

Quantization

Linear

Quantization Range

-23.8304 ≤ 0.1288 * (q - 57) ≤ 9.0169

  • YOLOv8s-fp32

Inputs

Property

Value

Name

input.49

Tensor

float32[1,3,640,640]

Identifier

145

Outputs

Property

Value

Name

80

Tensor

float32[1,84,8400]

Identifier

78

Name

77

Tensor

float32[1,144,80,80]

Identifier

235

Name

78

Tensor

float32[1,144,40,40]

Identifier

73

Name

79

Tensor

float32[1,144,20,20]

Identifier

343

Benchmark Results

Note

The benchmark results shown below were measured with performance mode enabled. These numbers are for reference only, as actual performance may vary depending on the hardware and platform used.

Please note the following limitations:

  1. The G350 does not support Neuron Stable Delegate (APU) and APU (MDLA) because the hardware does not yet support these features.

  2. Running models on the G350 using ARMNN inference may result in a crash due to the model size being too large for the platform to handle.

  • YOLOv8s-quant8

Run model (.tflite) 10 times

CPU (Thread:8)

GPU

ARMNN(GpuAcc)

ARMNN(CpuAcc)

Neuron Stable Delegate

NeuronSDK

G350

1030.54 ms (Thread:4)

1306.24 ms

752.383 ms

730.644 ms

N/A

N/A

G510

360.921 ms

437.340 ms

232.064 ms

178.786 ms

29.564 ms

25.51 ms

G700

169.113 ms

301.178 ms

162.038 ms

160.934 ms

27.336 ms

17.01 ms

G1200

170.408 ms

207.360 ms

104.634 ms

88.477 ms

29.590 ms

28.04 ms

  • YOLOv8s-fp32

Run model (.tflite) 10 times

CPU (Thread:8)

GPU

ARMNN(GpuAcc)

ARMNN(CpuAcc)

Neuron Stable Delegate

NeuronSDK

G350

2191.58 ms (Thread:4)

1273.35 ms

1145.45 ms

N/A

N/A

N/A

G510

832.005 ms

410.635 ms

373.830 ms

428.679 ms

68.295 ms

70.95 ms

G700

465.654 ms

284.420 ms

258.681 ms

361.914 ms

49.723 ms

50.04 ms

G1200

415.078 ms

190.626 ms

164.658 ms

209.437 ms

55.250 ms

55.84 ms

Run Benchmark Tools

This section will guide you on how to execute the benchmark tool with different delegates and hardware configurations.

  1. First, push your TFLite model to the target device:

adb push <your_tflite_model> /usr/share/label_image/

Make sure to replace <your_tflite_model> with the actual path of your TFLite model.

  1. Next, open an ADB shell to the target device:

adb shell

After this, you can execute the following commands directly from the shell.

Execute on CPU (8 threads)

To execute the benchmark on the CPU using 8 threads, run the following command:

benchmark_model --graph=/usr/share/label_image/<your_tflite_model> --num_threads=8 --num_runs=10

Execute on GPU, with GPU delegate

To execute the benchmark on the GPU using the TensorFlow Lite GPU delegate, run the following command:

benchmark_model --graph=/usr/share/label_image/<your_tflite_model> --use_gpu=1 --allow_fp16=0 --gpu_precision_loss_allowed=0 --num_runs=10

Execute on GPU, with Arm NN delegate

To execute the benchmark on the GPU using the Arm NN delegate, use the following command:

benchmark_model --graph=/usr/share/label_image/<your_tflite_model> --external_delegate_path=/usr/lib/libarmnnDelegate.so.29 --external_delegate_options="backends:GpuAcc" --num_runs=10

Execute on CPU, with Arm NN delegate

To run the benchmark on the CPU using the Arm NN delegate, use the following command:

benchmark_model --graph=/usr/share/label_image/<your_tflite_model> --external_delegate_path=/usr/lib/libarmnnDelegate.so.29 --external_delegate_options="backends:CpuAcc" --num_runs=10

Execute on APU, with Neuron Delegate

For executing on the APU using the Neuron delegate, run the following command:

benchmark_model --stable_delegate_settings_file=/usr/share/label_image/stable_delegate_settings.json --use_nnapi=false --use_xnnpack=false --use_gpu=false --min_secs=20 --graph=/usr/share/label_image/<your_tflite_model>

Note

If you are using the G350 platform, please make the following adjustments:

  • For CPU-based benchmarks, change the –num_threads parameter to 4:

    benchmark_model --graph=/usr/share/label_image/<your_tflite_model> --num_threads=4 --use_xnnpack=0 --num_runs=10
    
  • For all benchmarks (CPU, GPU, Arm NN), add the parameter –use_xnnpack=0 to disable the XNNPACK delegate

Neuron SDK

Follow these steps to benchmark your TensorFlow Lite model using the Neuron SDK with MDLA 3.0:

  1. Transfer the Model to the Device:

    Use adb to push your TFLite model to the device:

    adb push <your_tflite_model> /user/share/benchmark_dla/
    
  2. Access the Device Shell:

    Connect to your device’s shell:

    adb shell
    
  3. Navigate to the Benchmark Directory:

    Change to the directory where the model is stored:

    cd /user/share/benchmark_dla/
    
  4. Run the Benchmark:

    Execute the benchmarking script with the following command:

    python3 benchmark.py --file <your_tflite_model> --target mdla3.0 --profile --options='--relax-fp32'
    

Description:

  • The benchmark.py script runs a performance evaluation on your model using MDLA 3.0.

  • The –file parameter specifies the path to your TFLite model.

  • The –target mdla3.0 option sets the target hardware to MDLA 3.0.

  • The –profile flag enables profiling to provide detailed performance metrics.

  • The –options=’–relax-fp32’ option allows relaxation of floating-point precision to improve compatibility with MDLA.