ConvNeXt Models

Overview

ConvNeXts, built using standard ConvNet components, offer strong competition to Transformers in both accuracy and scalability. They achieve 87.8% top-1 accuracy on ImageNet and surpass Swin Transformers in COCO detection and ADE20K segmentation, all while maintaining the simplicity and efficiency characteristic of traditional ConvNets.

Getting Started

Follow these steps to use and convert ConvNeXt models using PyTorch and TorchVision.

  1. Install Required Libraries:

    Ensure you have the necessary libraries installed:

    pip install torch torchvision
    
  2. Load and Convert ConvNeXt Model:

    Load a pretrained ConvNeXt Base model using PyTorch and TorchVision. Create a dummy input tensor for tracing, trace the model to convert it to TorchScript, and finally save the traced model.

    import torch
    import torchvision
    
    model = torchvision.models.convnext_base(pretrained=True)
    trace_data = torch.randn(1, 3, 224, 224)
    trace_model = torch.jit.trace(model.cpu().eval(), trace_data)
    torch.jit.save(trace_model, 'convnext_base.pt')
    

How It Works ?

Before you begin, ensure that the NeuroPilot Converter Tool is installed.

Quant8 Conversion Process

  1. Generate Calibration Data:

    The following script creates a directory named data and generates 100 batches of random input data, each saved as a .npy file. This data is used for calibration during the quantization process.

    import os
    import numpy as np
    
    os.mkdir('data')
    for i in range(100):
        data = np.random.randn(1, 3, 224, 224).astype(np.float32)
        np.save(f'data/batch_{i}.npy', data)
    
  2. Convert to Quantized TFLite Format:

    Use the following command to convert the model to a quantized TFLite format using the generated calibration data:

    mtk_pytorch_converter                                 \
        --input_script_module_file=convnext_base.pt    \
        --output_file=convnext_base_ptq_quant.tflite   \
        --input_shapes=1,3,224,224                     \
        --quantize=True                                \
        --input_value_ranges=-1,1                      \
        --calibration_data_dir=data/                   \
        --calibration_data_regexp=batch_.*\.npy
    

FP32 Conversion Process

To convert the model to a non-quantized (FP32) TFLite format, use the following command:

mtk_pytorch_converter                                 \
    --input_script_module_file=convnext_base.pt    \
    --output_file=convnext_base.tflite             \
    --input_shapes=1,3,224,224

Model Details

General Information

Property

Value

Category

Classification

Input Size

224x224

GFLOPS

15.36

#Params (M)

88.59

Training Framework

PyTorch

Inference Framework

TFLite

Quant8 Model package

Download

Float32 Model package

Download

Model Properties

Quant8

  • Format: TensorFlow Lite v3

  • Description: Exported by NeuroPilot converter v7.14.1+release

Inputs

Property

Value

Name

x.4

Tensor

int8[1,3,224,224]

Identifier

83

Quantization

Linear

Quantization Range

-1.0039 ≤ 0.0078 * q ≤ 0.9961

Outputs

Property

Value

Name

1383

Tensor

int8[1,1000]

Identifier

306

Quantization

Linear

Quantization Range

-1.8282 ≤ 0.0294 * (q + 66) ≤ 5.6910

Fp32

  • Format: TensorFlow Lite v3

  • Description: Exported by NeuroPilot converter v7.14.1+release

Inputs

Property

Value

Name

x.4

Tensor

float32[1,3,224,224]

Identifier

600

Outputs

Property

Value

Name

1383

Tensor

float32[1,1000]

Identifier

84

Performance Benchmarks

ConvNeXt-quant8

Run model (.tflite) 10 times

CPU (Thread:8)

GPU

ARMNN(GpuAcc)

ARMNN(CpuAcc)

Neuron Stable Delegate(APU)

APU(MDLA)

APU(VPU)

G350

N/A

N/A

N/A

N/A

N/A

N/A

N/A

G510

N/A

N/A

N/A

N/A

N/A

55.03 ms

N/A

G700

N/A

N/A

N/A

N/A

N/A

38.22 ms

N/A

G1200

N/A

N/A

N/A

N/A

N/A

N/A

N/A

ConvNeXt-fp32

  • Widespread: CPU only, light workload.

  • Performance: CPU and GPU, medium workload.

  • Ultimate: CPU, GPU, and APUs, heavy workload.

Resources