ONNX Runtime - Performance Comparison

This page provides a comprehensive performance comparison of validated ONNX models across all MediaTek Genio platforms. Measurements are obtained using ONNX Runtime with hardware acceleration (where available).

Note

  • G520 / G720: Leverage the Neuron Execution Provider (EP) for high-speed NPU acceleration.

  • G350 / G510 / G700 / G1200: These platforms currently execute ONNX models via the CPU EP.

  • All values are represented in milliseconds (ms).

  • Cells marked as - indicate data is currently being measured, while N/A indicates the model is not supported on that specific hardware configuration.

TAO Related Models
TAO Related Models Performance (Unit: ms)

Task

Model Name

Data Type

Input Size

G520 (NPU)

G520 (CPU)

G720 (NPU)

G720 (CPU)

G510 (CPU)

G700 (CPU)

G1200 (CPU)

G350 (CPU)

Object Detection

PeopleNet (ResNet34)

Float32

114

3917

Object Detection

PeopleNet (ResNet34)

Quant8

42

1092

Recognition

Action Recognition Net (ResNet18)

Float32

27

388

Pose Estimation

BodyPoseNet

Float32

72

2000

Object Detection

LPDNet (USA Pruned)

Float32

6.5

127

Segmentation

PeopleSemSegNet_AMR

Float32

932

7764

Segmentation

PeopleSemSegNet_AMR (Rel)

Float32

54

207

Segmentation

PeopleSemSegNet (ShuffleSeg)

Float32

56

205

Segmentation

PeopleSemSegNet (Vanilla Unet)

Float32

1138

7680

Re-Identification

ReIdentificationNet (ResNet50)

Float32

11

315

Classification

Retail Object Recognition

Float32

34

713

OCR

Ocrnet_resnet50

Float32

39

417

OCR

Ocrnet_resnet50 (Pruned)

Float32

34

263

OCR

ocd_resnet50

Float32

700

7161

OCR

ocd_resnet50

Float32

323

3274

OCR

ocdnet_mixnet

Float32

1116

17960

Classification

Pose Classification (ST-GCN)

Float32

352

968

Pose Estimation

Centerpose (Chair DLA34)

Float32

777

3427

Pose Estimation

Centerpose (Camera FAN)

Float32

5741

9137

Object Detection

LPDNet (CCPD Pruned)

Float32

12

206

Pose Estimation

Foundation Pose (Refiner)

Float32

68.7

411

Pose Estimation

Foundation Pose (Score)

Float32

37.1

373

Pose Estimation

Multi 3D Centerpose

Float32

442.7

1686

Legacy Analytical Models

Detection

Detection Models Performance (Unit: ms)

Task

Model Name

Data Type

Input Size

G520 (NPU)

G520 (CPU)

G720 (NPU)

G720 (CPU)

G510 (CPU)

G700 (CPU)

G1200 (CPU)

G350 (CPU)

Object Detection

YOLOv5s

Quant8

83.512

83.647

Object Detection

YOLOv5s

Float32

35.344

364.161

Object Detection

YOLOv8s

Quant8

120.081

120.178

Object Detection

YOLO11s

Quant8

110.876

110.882

Classification

Classification Models Performance (Unit: ms)

Task

Model Name

Data Type

Input Size

G520 (NPU)

G520 (CPU)

G720 (NPU)

G720 (CPU)

G510 (CPU)

G700 (CPU)

G1200 (CPU)

G350 (CPU)

Classification

ConvNeXt

Quant8

353.309

353.774

Classification

ConvNeXt

Float32

591.345

687.457

Classification

DenseNet

Quant8

54.058

54.243

Classification

DenseNet

Float32

13.917

132.924

Classification

EfficientNet

Quant8

13.456

13.439

Classification

EfficientNet

Float32

2.977

48.327

Classification

MobileNetV2

Quant8

5.734

5.731

Classification

MobileNetV2

Float32

1.909

24.492

Classification

MobileNetV3

Quant8

4.176

4.186

Classification

MobileNetV3

Float32

9.393

9.191

Classification

ResNet

Quant8

17.595

17.731

Classification

ResNet

Float32

3.659

80.046

Classification

SqueezeNet

Quant8

17.676

17.739

Classification

SqueezeNet

Float32

15.313

35.054

Classification

VGG

Quant8

146.614

145.84

Classification

VGG

Float32

33.738

525.109

Recognition

Recognition Models Performance (Unit: ms)

Task

Model Name

Data Type

Input Size

G520 (NPU)

G520 (CPU)

G720 (NPU)

G720 (CPU)

G510 (CPU)

G700 (CPU)

G1200 (CPU)

G350 (CPU)

Recognition

VGGFace

Quant8

146.057

146.218

Recognition

VGGFace

Float32

33.762

527.26

Robotic Models
Robotic Models Performance (Unit: ms)

Task

Model Name

Data Type

Input Size

G520 (NPU)

G520 (CPU)

G720 (NPU)

G720 (CPU)

G510 (CPU)

G700 (CPU)

G1200 (CPU)

G350 (CPU)

Omni6DPose

scale_policy

Float32

0.029

0.034

Dino

dino_vitb8

Float32

59.66

494.27

Diffusion Policy

model_diffusion_sampling

Float32

15.16

15.11

MobileSam

mobilesam_decoder

Float32

12.2

13.59

MobileSam

mobilesam_encoder

Float32

57.81

224.04

RegionNormalizedGrasp

anchornet

Float32

25.46

60.34

RegionNormalizedGrasp

localnet

Float32

6.23

6.4

YoloWorld

yoloworld_xl

Float32

263.01

3696.49