Open Source Converter
This page describes how to convert YOLOv5s PyTorch models to TFLite format using open-source tools.
Set Up the YOLOv5 Environment
Note
It is recommended to use Python 3.7 to ensure compatibility with the YOLOv5 environment and conversion scripts.
Clone the repository:
git clone http://github.com/ultralytics/yolov5 cd yolov5 git reset --hard 485da42
Install dependencies:
pip3 install -r requirements.txt
Apply the FP32 export patch:
wget https://mediatek-aiot.s3.ap-southeast-1.amazonaws.com/aiot/download/model-zoo/patches/export_fp32.patch git apply export_fp32.patch
Note
The
export_fp32.patchmodifies the export script to support 32-bit float (FP32) TFLite output instead of the default FP16.
Convert the PyTorch Model to TFLite
Convert to INT8 format:
python3 export.py --weights yolov5s.pt --img-size 640 640 --include tflite --int8
Convert to FP32 format:
python3 export.py --weights yolov5s.pt --img-size 640 640 --include tflite
The export.py script parameters:
--weights: Path to the source model weight file.--img-size: Input image dimensions.--include tflite: Target export format.--int8: Enables INT8 quantization.
Next Steps
After generating the .tflite model, refer to Visualizing AI Models to inspect the model structure and tensor information required for application development. Otherwise, proceed to Compile TFLite Models to DLA to generate a compiled binary for directly NPU execution.