Performance Benchmarks
This page provides a centralized reference for evaluating AI inference performance across MediaTek Genio platforms, which aggregates benchmarking results for various AI workloads, including analytical AI and generative AI, across multiple inference frameworks such as TFLite (LiteRT) and ONNX Runtime.
Important
For more platform-specific details and comprehensive performance data, please refer to the Model Zoo.
AI Supporting Scope
The following table summarizes the AI capabilities and framework support across different MediaTek Genio platforms.
Platform |
OS |
TFLite - Analytical AI (Online) |
TFLite - Analytical AI (Offline) |
TFLite - Generative AI |
ONNX Runtime - Analytical AI |
Genio 520/720 |
Android |
CPU + GPU + NPU |
NPU |
NPU |
CPU + NPU |
Yocto |
CPU + GPU + NPU |
NPU |
X (ETA: 2026/Q2) |
CPU + NPU |
|
Genio 510/700 |
Android |
CPU + GPU + NPU |
NPU |
X |
X |
Yocto |
CPU + GPU + NPU |
NPU |
X |
CPU |
|
Ubuntu |
CPU + GPU + NPU |
NPU |
X |
X |
|
Genio 1200 |
Android |
CPU + GPU + NPU |
NPU |
X |
X |
Yocto |
CPU + GPU + NPU |
NPU |
X |
CPU |
|
Ubuntu |
CPU + GPU + NPU |
NPU |
X |
X |
|
Genio 350 |
Android |
CPU + GPU + NPU |
X |
X |
X |
Yocto |
CPU + GPU |
X |
X |
CPU |
|
Ubuntu |
CPU + GPU |
X |
X |
X |
TFLite(LiteRT) - Analytical AI
The following tables list the validated TFLite analytical models and their performance across Genio platforms. The statistics were measured using offline inference with performance mode enabled.
TFLite(LiteRT) - Generative AI
For Generative AI workloads, the following tables provide representative performance data for reference and platform capability validation.
LLM Performance Comparison
Model |
Genio 720 |
Genio 520 |
MT8893 |
|---|---|---|---|
DeepSeek-R1-Distill-Llama-8B |
36.653 |
29.322 |
425.791 |
DeepSeek-R1-Distill-Qwen-1.5B |
341.686 |
273.349 |
1057.25 |
DeepSeek-R1-Distill-Qwen-7B |
69.23 |
55.384 |
448.167 |
gemma2-2b-it |
193.392 |
154.714 |
891.004 |
internlm2-chat-1_8b |
276.218 |
220.974 |
1544.7 |
llama3-8b |
56.495 |
45.196 |
426.125 |
llama3.2-1B-Instruct |
401.288 |
321.03 |
2093.61 |
llama3.2-3B-Instruct |
154.557 |
123.646 |
1022.95 |
Qwen2-0.5B-Instruct |
762.455 |
609.964 |
3010.84 |
Qwen2-1.5B-Instruct |
341.993 |
273.594 |
1616.22 |
Qwen2-7B-Instruct |
70.416 |
56.333 |
474.383 |
Qwen1.5-1.8B-Chat |
310.639 |
248.511 |
1516.5 |
Qwen2.5-1.5B-Instruct |
341.418 |
273.134 |
1621.85 |
Qwen2.5-3B-Instruct |
162.481 |
120 |
751.056 |
Qwen2.5-7B-Instruct |
70.548 |
56.438 |
471.945 |
Qwen3 1.7B |
233.032 |
186.426 |
1069.16 |
Phi-3-mini-4k-instruct |
129.6 |
103.68 |
828.868 |
MiniCPM-2B-sft-bf16-llama-format |
194.793 |
155.834 |
886.721 |
medusa_v1_0_vicuna_7b_v1.5 |
91.821 |
73.457 |
501.053 |
vicuna1.5-7b-tree-speculative-decoding-plus |
84.895 |
67.916 |
454.583 |
llava1.5-7b-speculative-decoding |
73.103 |
58.482 |
267.981 |
baichuan-7b-int8-cache |
81.184 |
64.947 |
561.762 |
baichuan-7b |
79.745 |
63.796 |
536.642 |
Model |
Genio 720 |
Genio 520 |
MT8893 |
|---|---|---|---|
DeepSeek-R1-Distill-Llama-8B |
4.578 |
3.662 |
11.359 |
DeepSeek-R1-Distill-Qwen-1.5B |
11.764 |
9.411 |
25.681 |
DeepSeek-R1-Distill-Qwen-7B |
4.677 |
3.742 |
11.693 |
gemma2-2b-it |
8.752 |
7.002 |
21.372 |
internlm2-chat-1_8b |
17.549 |
14.039 |
42.393 |
llama3-8b |
4.698 |
3.758 |
11.512 |
llama3.2-1B-Instruct |
24.533 |
19.626 |
61.144 |
llama3.2-3B-Instruct |
10.577 |
8.462 |
25.048 |
Qwen2-0.5B-Instruct |
50.06 |
40.048 |
77.871 |
Qwen2-1.5B-Instruct |
19.563 |
15.65 |
38.314 |
Qwen2-7B-Instruct |
4.883 |
3.906 |
11.642 |
Qwen1.5-1.8B-Chat |
9.895 |
7.916 |
31.383 |
Qwen2.5-1.5B-Instruct |
18.427 |
14.742 |
38.574 |
Qwen2.5-3B-Instruct |
10.31 |
7.84 |
20.868 |
Qwen2.5-7B-Instruct |
4.892 |
3.914 |
11.739 |
Qwen3 1.7B |
10.911 |
8.729 |
23.424 |
Phi-3-mini-4k-instruct |
7.324 |
5.859 |
18.869 |
MiniCPM-2B-sft-bf16-llama-format |
7.694 |
6.155 |
22.275 |
medusa_v1_0_vicuna_7b_v1.5 |
10.564 |
8.451 |
22.787 |
vicuna1.5-7b-tree-speculative-decoding-plus |
12.6489 |
10.119 |
22.722 |
llava1.5-7b-speculative-decoding |
7.281 |
5.825 |
6.779 |
baichuan-7b-int8-cache |
4.239 |
3.391 |
11.37 |
baichuan-7b |
4.182 |
3.346 |
10.56 |
VLM Performance Comparison
Model |
Genio 720 |
Genio 520 |
MT8893 |
|---|---|---|---|
Qwen2.5 VL 3B |
0.208 |
0.26 |
0.096 |
InternVL3-1B |
1.744 |
2.18 |
0.508 |
Model |
Genio 720 |
Genio 520 |
MT8893 |
|---|---|---|---|
Qwen2.5 VL 3B |
100.065 |
80.052 |
339.901 |
InternVL3-1B |
74.748 |
59.798 |
183.641 |
Model |
Genio 720 |
Genio 520 |
MT8893 |
|---|---|---|---|
Qwen2.5 VL 3B |
4.776 |
3.821 |
10.1337 |
InternVL3-1B |
6.157 |
4.926 |
14.094 |
Stable Diffusion Performance Comparison
Model |
Genio 720 |
Genio 520 |
MT8893 |
|---|---|---|---|
Stable Diffusion v.1.5 |
25816 |
32270 |
7075 |
Stable Diffusion v.1.5 controlnet |
33642 |
42053 |
9395 |
Stable_diffusion_v1_5_controlnet_lora |
34148 |
42685 |
10268 |
Stable_diffusion_v1.5_2lora |
35978 |
44973 |
11487 |
Stable Diffusion v2.1 base model with controlnet |
31183 |
38979 |
6969 |
Stable Diffusion v1.5 LCM Ipadaptor |
10645 |
13306 |
2254 |
Stable_diffusion_lcm_multiDiffusion |
29103.565 |
36379.456 |
7438.723 |
Model |
Genio 720 |
Genio 520 |
MT8893 |
|---|---|---|---|
Stable Diffusion v.1.5 |
24813 |
31016 |
6132 |
Stable Diffusion v.1.5 controlnet |
32294 |
40368 |
8035 |
Stable_diffusion_v1_5_controlnet_lora |
32454 |
40568 |
8472 |
Stable_diffusion_v1.5_2lora |
33195 |
41494 |
10130 |
Stable Diffusion v2.1 base model with controlnet |
29828 |
37285 |
5451 |
Stable Diffusion v1.5 LCM Ipadaptor |
5861 |
7326 |
1077 |
Stable_diffusion_lcm_multiDiffusion |
28126.856 |
35158.57 |
6697.967 |
CLIP Performance Comparison
Model |
Genio 720 |
Genio 520 |
MT8893 |
|---|---|---|---|
img_encoder_proj_clip_vit_large_dynamic |
567.61 |
709.513 |
358.609 |
img_encoder_proj_openclip_vit_big_g_dynamic |
12035.52 |
15044.4 |
1390.56 |
img_encoder_proj_openclip_vit_h_dynamic |
1440.197 |
1800.246 |
591.931 |
text_encoder_clip_vit_large |
455.079 |
568.849 |
308.718 |
text_encoder_openclip_vit_h |
750.703 |
938.379 |
510.919 |
Model |
Genio 720 |
Genio 520 |
MT8893 |
|---|---|---|---|
img_encoder_proj_clip_vit_large_dynamic |
257.388 |
321.735 |
51.135 |
img_encoder_proj_openclip_vit_big_g_dynamic |
3142.959 |
3928.699 |
517.126 |
img_encoder_proj_openclip_vit_h_dynamic |
881.647 |
1102.059 |
147.467 |
text_encoder_clip_vit_large |
38.993 |
48.741 |
18.938 |
text_encoder_openclip_vit_h |
119.77 |
149.713 |
48.485 |
ONNX Runtime - Analytical AI
The following tables list ONNX models validated on Genio platforms. Measurements were obtained using the NPU Execution Provider (where available) with performance mode enabled.
Performance Notes
Performance can vary depending on:
The specific Genio platform and hardware configuration.
The version of the board image and evaluation kit (EVK).
The selected backend and model variant.
To obtain the most accurate performance numbers for your use case, you must run the application directly on the target platform.