NNStreamer
Overview
NNStreamer is a set of Gstreamer plugins that allow Gstreamer developers to adopt neural network models easily and efficiently and neural network developers to manage neural network pipelines and their filters easily and efficiently.
NNStreamer provides the new Gstreamer stream data type and a set of Gstreamer elements (plugins) to construct media stream pipeline with neural network models. It is well documented through its online document site and it supports well-known neural network frameworks including Tensorflow, Tensorflow-lite, Caffe2, PyTorch, OpenVINO and ARMNN.
Users may include custom C functions, C++ objects, or Python objects as well as such frameworks as neural network filters of a pipeline in run-time and also add and integrate support for such frameworks or hardware AI accelerators in run-time, which may exist as independent plugin binaries.
NNStreamer::tensor_filter
tensor_filter is the main element of the whole NNStreamer project.
This connects gstreamer data stream with neural network frameworks such as
Tensorflow-lite.
Like a typical gstreamer plugin, you can use gst-inspect-1.0
to view all plugin information of the tensor_filter
:
gst-inpsect-1.0 tensor_filter
...
Pad Templates:
SINK template: 'sink'
Availability: Always
Capabilities:
other/tensor
framerate: [ 0/1, 2147483647/1 ]
other/tensors
format: { (string)static, (string)flexible }
framerate: [ 0/1, 2147483647/1 ]
SRC template: 'src'
Availability: Always
Capabilities:
other/tensor
framerate: [ 0/1, 2147483647/1 ]
other/tensors
format: { (string)static, (string)flexible }
framerate: [ 0/1, 2147483647/1 ]
Element has no clocking capabilities.
Element has no URI handling capabilities.
Pads:
SINK: 'sink'
Pad Template: 'sink'
SRC: 'src'
Pad Template: 'src'
Element Properties:
accelerator : Set accelerator for the subplugin with format (true/false):(comma separated ACCELERATOR(s)). true/false determines if accelerator is to be used. list of accelerators determines the backend (ignored with false). Example, if GPU, NPU can be used but not CPU - true:npu,gpu,!cpu. The full list of accelerators can be found in nnstreamer_plugin_api_filter.h. Note that only a few subplugins support this property.
flags: readable, writable
String. Default: ""
custom : Custom properties for subplugins ?
flags: readable, writable
String. Default: ""
framework : Neural network framework
flags: readable, writable
String. Default: "auto"
input : Input tensor dimension from inner array, up to 4 dimensions ?
flags: readable, writable
String. Default: ""
input-combination : Select the input tensor(s) to invoke the models
flags: readable, writable
String. Default: ""
inputlayout : Set channel first (NCHW) or channel last layout (NHWC) or None for input data. Layout of the data can be any or NHWC or NCHW or none for now.
flags: readable, writable
String. Default: ""
inputname : The Name of Input Tensor
flags: readable, writable
String. Default: ""
inputranks : The Rank of the Input Tensor, which is separated with ',' in case of multiple Tensors
flags: readable
String. Default: ""
inputtype : Type of each element of the input tensor ?
...
On IoT Yocto, Genio platforms provide different machine learning software stacks for the developer:
Software Stack |
Backend |
Genio 350-EVK |
Genio 1200-EVK |
Genio 700-EVK |
Tensorflow-Lite |
CPU |
V |
V |
V |
Tensorflow-Lite + GPU delegate |
GPU |
V |
V |
V |
Tensorflow-Lite + ARMNN Delegate |
GPU, CPU |
V |
V |
V |
Tensorflow-Lite + NNAPI Delegate |
VPU |
V |
X |
X |
Neuron SDK |
MDLA, VPU |
X |
V |
V |
For the Tensorflow-Lite framework:
Users can directly construct gstreamer media stream pipeline using the existing tensor_filter_tensorflow_lite. You can find many examples of using the Tensorflow-Lite framework in NNStreamer-Example.
When using
tensor_filter_tensorflow_lite
, you should specify neural network framework, model path. For the model meta information, you do not need to specify the properties, such as in/out type and dimension because these properties can automatically get from the tensorflow-lite model intensor_filter_tensorflow_lite
.Here is an example of the launch line using the Tensorflow-Lite framework. More launch line examples here: NNStreamer-Example.
... tensor_converter ! \ tensor_filter framework=tensorflow-lite model=/usr/bin/nnstreamer-demo/mobilenet_v1_1.0_224_quant.tflite custom=NumThreads:8 ! \ ...
IoT Yocto have provided a new
tensor_filter
for Neuron SDK. Users can usetensor_filter_neuronsdk
to create gstreamer media stream pipeline and leverage Genio platform’s powerful AI hardware accelerator, such as MDLA. You can find the implementation of thetensor_filter_neuronsdk
in IoT Yocto NNStreamer source ($BUILD_DIR/tmp/work/armv8a-poky-linux/nnstreamer/$PV/git/ext/nnstreamer/tensor_filter/tensor_filter_neuronsdk.cc
).
When using
tensor_filter_neuronsdk
, you should specify neural network framework, model path. For the model meta information, you have to specify the properties, such as in/out type and dimension because these properties can not get from the dla file intensor_filter_neuronsdk
, dla file does not provide the interfaces to obtain this information.Here is an example of the launch line using the Neuron SDK:
... tensor_converter ! \ tensor_filter framework=neuronsdk model=/usr/bin/nnstreamer-demo/mobilenet_v1_1.0_224_quant.dla inputtype=uint8 input=3:224:224:1 outputtype=uint8 output=1001:1 ! \ ...
Note
The
tensor_filter
properties related to in/out type and dimension are as follows:
inputtype: Type of each element of the input tensor.
inputlayout: Set channel first (NCHW) or channel last layout (NHWC) or None for input data.
input: Input tensor dimension from inner array, up to 4 dimensions.
outputtype: Type of each element of the output tensor.
outputlayout: Set channel first (NCHW) or channel last layout (NHWC) or None for output data.
output: Output tensor dimension from inner array, up to 4 dimensions.
You can also find more detailed descriptions of tensor_filter from the NNstreamer online document and the source code.
NNStreamer Unit Test
NNStreamer provides gtest based test cases for common library and nnstreamer plugins. You can run the unit tests using the following command to get insights into the integration status of nnstreamer on Yocto.
cd /usr/bin/unittest-nnstreamer/
ssat
...
==================================================
[PASSED] transform_typecast (37 passed among 39 cases)
[PASSED] nnstreamer_filter_neuronsdk (8 passed among 8 cases)
[PASSED] transform_dimchg (13 passed among 13 cases)
[PASSED] nnstreamer_decoder_pose (3 passed among 3 cases)
[PASSED] nnstreamer_decoder_boundingbox (15 passed among 15 cases)
[PASSED] transform_clamp (10 passed among 10 cases)
[PASSED] transform_stand (9 passed among 9 cases)
[PASSED] transform_arithmetic (36 passed among 36 cases)
[PASSED] nnstreamer_decoder (17 passed among 17 cases)
[PASSED] nnstreamer_filter_custom (23 passed among 23 cases)
[PASSED] transform_transpose (16 passed among 16 cases)
[PASSED] nnstreamer_filter_tensorflow2_lite (31 passed among 31 cases)
[PASSED] nnstreamer_repo_rnn (2 passed among 2 cases)
[PASSED] nnstreamer_converter (32 passed among 32 cases)
[PASSED] nnstreamer_repo_dynamicity (10 passed among 10 cases)
[PASSED] nnstreamer_mux (84 passed among 84 cases)
[PASSED] nnstreamer_split (21 passed among 21 cases)
[PASSED] nnstreamer_repo (77 passed among 77 cases)
[PASSED] nnstreamer_demux (43 passed among 43 cases)
[PASSED] nnstreamer_filter_python3 (0 passed among 0 cases)
[PASSED] nnstreamer_rate (17 passed among 17 cases)
[PASSED] nnstreamer_repo_lstm (2 passed among 2 cases)
==================================================
[PASSED] All Test Groups (23) Passed!
TC Passed: 595 / Failed: 0 / Ignored: 2
Some test cases are not invoked via command: ssat
because they lack the implementation of runTest.sh
, with ArmNN unit tests being one such example.
However, you can confirm the integration status of ArmNN with NNStreamer by directly running /usr/bin/unittest-nnstreamer/tests/unittest_filter_armnn
.
cd /usr/bin/unittest-nnstreamer/tests/
export NNSTREAMER_SOURCE_ROOT_PATH=/usr/bin/unittest-nnstreamer/
./unittest_filter_armnn
...
[==========] 13 tests from 1 test suite ran. (141 ms total)
[ PASSED ] 13 tests.
NNStreamer Pipeline Examples
IoT Yocto provides follownig examples in python in /usr/bin/nnstreamer-demo/
to demonstrate how to create a NNStreamer pipeline with different tensor_filters
for different use cases and implementation options.
Those examples are adapted from NNStreamer-Example.
Python script |
Category |
nnstreamer_example_image_classification_uvc.py |
Image classification |
nnstreamer_example_object_detection_uvc.py |
Object detection |
nnstreamer_example_object_detection_yolov5_uvc.py |
Object detection |
nnstreamer_example_pose_estimation_uvc.py |
Pose estimation |
nnstreamer_example_face_detection_uvc.py |
Face detection |
nnstreamer_example_low_light_image_enhancement_uvc.py |
Image enhancement |
To run these examples, you will need a USB Video Class (UVC) camera. You can use a USB webcam as a v4l2 video device and operate through GStreamer. To find out the USB camera, you can refer to command in USB Camera, such as
ls -l /sys/class/video4linux
...
lrwxrwxrwx 1 root root 0 Oct 8 01:29 video5 -> ../../devices/platform/soc/11201000.usb/11200000.xhci/usb1/1-1/1-1.3/1-1.3:1.0/video4linux/video5
...
From the above command, we can find that /dev/video5
is the camera node.
For each example in python, you can use --help
to find all options of it.
python3 nnstreamer_example_image_classification_uvc.py --help
usage: nnstreamer_example_image_classification_uvc.py [-h] [--engine {nnapi,tflite,armnn}] [--cam CAM] [--width WIDTH] [--height HEIGHT] [--performance {NA,G1200,G700,G350}] [--fullscreen {0,1}]
options:
-h, --help show this help message and exit
--engine {neuronsdk,tflite,armnn}
Choose a backends to inference. Default: tflite
---cam CAM Input a camera node id, ex: 130 .
Use 'v4l2-ctl --list-devices' query camera node id.
Example:
$ v4l2-ctl --list-devices
...
C922 Pro Stream Webcam (usb-11290000.xhci-1.2):
/dev/video130
/dev/video131
...
--width WIDTH Input video display width, ex: 640
--height HEIGHT Input video display height, ex: 480
--performance {NA,G1200,G700,G350}
Select platform and make CPU/GPU/APU run under performance mode, ex: G1200
--fullscreen {0,1} Fullscreen preview.
1: Enable
0: Disable
Below are the main options:
--engine
:Choose one from the backends supported by the platform to use. It could be
neuronsdk
,tflite
,armnn
ornnapi
.You can find the function:
build_pipeline
in python script. This function will create thetensor_filter
with different framework and properties based on the backend you choose.Take
nnstreamer_example_image_classification_uvc.py
as an example:--engine tflite
:tensor_filter framework=tensorflow-lite model=/usr/bin/nnstreamer-demo/mobilenet_v1_1.0_224_quant.tflite custom=NumThreads:8
--engine armnn
:tensor_filter framework=tensorflow-lite model=/usr/bin/nnstreamer-demo/mobilenet_v1_1.0_224_quant.tflite custom=Delegate:External,ExtDelegateLib:/usr/lib/libarmnnDelegate.so.28.0,ExtDelegateKeyVal:backends#GpuAcc
--engine neuronsdk
:tensor_filter framework=neuronsdk model=/usr/bin/nnstreamer-demo/mobilenet_v1_1.0_224_quant.dla inputtype=uint8 input=3:224:224:1 outputtype=uint8 output=1001:1
As mentioned earlier, unlike using Tensorflow-Lite framework, when using neuronsdk, for the model meta information, you have to specify the properties, such as in/out type and dimension because these properties can not get from the dla file in
tensor_filter_neuronsdk
, dla file does not provide the interfaces to obtain this information.You can refer to the
build_pipeline
in python script to know how we set these properties:inputtype: Type of each element of the input tensor.
inputlayout: Set channel first (NCHW) or channel last layout (NHWC) or None for input data.
input: Input tensor dimension from inner array, up to 4 dimensions.
outputtype: Type of each element of the output tensor.
outputlayout: Set channel first (NCHW) or channel last layout (NHWC) or None for output data.
output: Output tensor dimension from inner array, up to 4 dimensions.
--engine nnapi
:tensor_filter framework=tensorflow-lite model=/usr/bin/nnstreamer-demo/mobilenet_v1_1.0_224_quant.tflite custom=Delegate:External,ExtDelegateLib:/usr/lib/nnapi_external_delegate.so
Note
--engine nnapi
is only available on Genio-350.
--cam
: Input a camera node id.--performance
:Set performance mode for your platform. Select your current platform and set the performance mode for it. It could be
--performance G1200
: Set the performance mode for Genio-1200--performance G700
: Set the performance mode for Genio-700--performance G350
: Set the performance mode for Genio-350
Performance mode will make the CPU, GPU, and APU running at the highest frequency and disable thermal throttling.
Note
In the following examples, we all use the camera node: /dev/video5
and run on Genio-700 platform as an example.
So, the options we use to run example are --cam 5 --performance G700
.
Before running example, set global variables for camera node and platform
CAMERA_NODE_ID=5
PLATFORM=G700
Image Classification
Python script:
/usr/bin/nnstreamer-demo/nnstreamer_example_image_classification_uvc.py
Run example:
Execute on MDLA by neuronsdk:
ENGINE=neuronsdk python3 /usr/bin/nnstreamer-demo/nnstreamer_example_image_classification_uvc.py --cam $CAMERA_NODE_ID --engine $ENGINE --performance $PLATFORM
Execute on CPU:
ENGINE=tflite python3 /usr/bin/nnstreamer-demo/nnstreamer_example_image_classification_uvc.py --cam $CAMERA_NODE_ID --engine $ENGINE --performance $PLATFORM
Execute on GPU by ArmNN delegate:
ENGINE=armnn python3 /usr/bin/nnstreamer-demo/nnstreamer_example_image_classification_uvc.py --cam $CAMERA_NODE_ID --engine $ENGINE --performance $PLATFORM
Execute on VPU by nnapi:
Note
--engine nnapi
is only available on Genio-350.ENGINE=nnapi python3 /usr/bin/nnstreamer-demo/nnstreamer_example_image_classification_uvc.py --cam $CAMERA_NODE_ID --engine $ENGINE --performance $PLATFORM
Average inference time
CPU
ARMNN GPU
MDLA
NNAPI(VPU)
Genio-1200
7.3
9
2.5
Not support
Genio-700
9.4
13
2.3
Not support
Genio-350
46.3
40
Not support
508
Pipeline graph:
Below is the gstreamer command and pipeline graph constructed in the example:
nnstreamer_example_image_classification_uvc.py
using--engine neuronsdk
. The pipeline graph is generated through thegst-report
command ofgst-instruments
. Detailed command can be found in Pipeline Profiling:gst-launch-1.0 \ v4l2src name=src device=/dev/video5 io-mode=mmap num-buffers=300 ! video/x-raw,width=640,height=480,format=YUY2 ! tee name=t_raw \ t_raw. ! queue ! textoverlay name=tensor_res font-desc=Sans,24 ! fpsdisplaysink sync=false video-sink="waylandsink sync=false fullscreen=0" \ t_raw. ! queue leaky=2 max-size-buffers=2 ! videoconvert ! videoscale ! video/x-raw,width=224,height=224,format=RGB ! tensor_converter ! \ tensor_filter framework=neuronsdk model=/usr/bin/nnstreamer-demo/mobilenet_v1_1.0_224_quant.dla inputtype=uint8 input=3:224:224:1 outputtype=uint8 output=1001:1 ! \ tensor_sink name=tensor_sink
Object Detection
ssd_mobilenet_v2_coco
Python script:
/usr/bin/nnstreamer-demo/nnstreamer_example_object_detection_uvc.py
Model: ssd_mobilenet_v2_coco.tflite
Run example:
Execute on MDLA by neuronsdk:
ENGINE=neuronsdk python3 /usr/bin/nnstreamer-demo/nnstreamer_example_object_detection_uvc.py --cam $CAMERA_NODE_ID --engine $ENGINE --performance $PLATFORM
Execute on CPU:
ENGINE=tflite python3 /usr/bin/nnstreamer-demo/nnstreamer_example_object_detection_uvc.py --cam $CAMERA_NODE_ID --engine $ENGINE --performance $PLATFORM
Execute on GPU by ArmNN delegate:
ENGINE=armnn python3 /usr/bin/nnstreamer-demo/nnstreamer_example_object_detection_uvc.py --cam $CAMERA_NODE_ID --engine $ENGINE --performance $PLATFORM
Average inference time
CPU
ARMNN GPU
MDLA
NNAPI(VPU)
Genio-1200
121
39
13
Not support
Genio-700
164
60
16.7
Not support
Genio-350
579
194.5
Not support
Not support
Pipeline graph:
Below is the gstreamer command and pipeline graph constructed in the example:
nnstreamer_example_object_detection_uvc.py
using--engine neuronsdk
. The pipeline graph is generated through thegst-report
command ofgst-instruments
. Detailed command can be found in Pipeline Profiling:gst-launch-1.0 \ v4l2src name=src device=/dev/video5 io-mode=mmap num-buffers=300 ! video/x-raw,width=640,height=480,format=YUY2 ! tee name=t_raw \ t_raw. ! queue leaky=2 max-size-buffers=10 ! compositor name=mix sink_0::zorder=1 sink_1::zorder=2 ! fpsdisplaysink sync=false video-sink="waylandsink sync=false fullscreen=0" \ t_raw. ! queue leaky=2 max-size-buffers=2 ! v4l2convert ! videoscale ! video/x-raw,width=300,height=300,format=RGB ! tensor_converter ! tensor_transform mode=arithmetic option=typecast:float32,add:-127.5,div:127.5 ! queue ! \ tensor_filter framework=neuronsdk model=/usr/bin/nnstreamer-demo/ssd_mobilenet_v2_coco.dla inputtype=float32 input=3:300:300:1 outputtype=float32,float32 output=4:1:1917:1,91:1917:1 ! \ tensor_decoder mode=bounding_boxes option1=mobilenet-ssd option2=/usr/bin/nnstreamer-demo/coco_labels_list.txt option3=/usr/bin/nnstreamer-demo/box_priors.txt option4=640:480 option5=300:300 ! queue leaky=2 max-size-buffers=2 ! mix.
yolov5
Python script:
/usr/bin/nnstreamer-demo/nnstreamer_example_object_detection_yolov5_uvc.py
Model: yolov5s-int8.tflite
Run example:
Execute on MDLA by neuronsdk:
ENGINE=neuronsdk python3 /usr/bin/nnstreamer-demo/nnstreamer_example_object_detection_yolov5_uvc.py --cam $CAMERA_NODE_ID --engine $ENGINE --performance $PLATFORM
Note
The yolov5 model is only supported by Genio-700, MDLA3.0 , not supported by Genio-1200, MDLA2.0.
On Genio-1200, the model cannot be compiled into dla file by ncc-tflite due to unsupported operation.
ncc-tflite --arch mdla2.0,tflite_cpu yolov5s-int8.tflite -o yolov5s-int8.dla --int8-to-uint8 OP[123]: RESIZE_NEAREST_NEIGHBOR ├ MDLA: HalfPixelCenters is unsupported. ├ TFLITE_CPU: Only support ResizeBilinear ├ EDMA: unsupported operation OP[145]: RESIZE_NEAREST_NEIGHBOR ├ MDLA: HalfPixelCenters is unsupported. ├ TFLITE_CPU: Only support ResizeBilinear ├ EDMA: unsupported operation ERROR: Cannot find an execution plan because of unsupported operations ERROR: Fail to compile yolov5s-int8.tflite
So you will fail to run
nnstreamer-demo/nnstreamer_example_object_detection_yolov5_uvc.py
on Genio-120.python3 /usr/bin/nnstreamer-demo/nnstreamer_example_object_detection_yolov5_uvc.py --cam 5 --engine neuronsdk --performance G1200 ... ERROR: Cannot open the file: /usr/bin/nnstreamer-demo/yolov5s-int8.dla ERROR: Cannot set a nullptr compiled network. ERROR: Cannot set compiled network. ERROR: Runtime loadNetworkFromFile fails. ERROR: Cannot initialize runtime pool. ...
Execute on CPU:
ENGINE=tflite python3 /usr/bin/nnstreamer-demo/nnstreamer_example_object_detection_yolov5_uvc.py --cam $CAMERA_NODE_ID --engine $ENGINE --performance $PLATFORM
Execute on GPU by ArmNN delegate:
ENGINE=armnn python3 /usr/bin/nnstreamer-demo/nnstreamer_example_object_detection_yolov5_uvc.py --cam $CAMERA_NODE_ID --engine $ENGINE --performance $PLATFORM
Average inference time
CPU
ARMNN GPU
MDLA
NNAPI(VPU)
Genio-1200
41
24.5
Not support
Not support
Genio-700
57
37.5
4.9
Not support
Genio-350
295
140
Not support
Not support
Pipeline graph:
Below is the gstreamer command and pipeline graph constructed in the example:
nnstreamer_example_object_detection_yolov5_uvc.py
using--engine neuronsdk
. The pipeline graph is generated through thegst-report
command ofgst-instruments
. Detailed command can be found in Pipeline Profiling:gst-launch-1.0 \ v4l2src name=src device=/dev/video5 io-mode=mmap num-buffers=300 ! video/x-raw,width=640,height=480,format=YUY2 ! tee name=t_raw \ t_raw. ! queue leaky=2 max-size-buffers=10 ! compositor name=mix sink_0::zorder=1 sink_1::zorder=2 ! fpsdisplaysink sync=false video-sink="waylandsink sync=false fullscreen=0" \ t_raw. ! queue leaky=2 max-size-buffers=2 ! videoconvert ! videoscale ! video/x-raw,width=320,height=320,format=RGB ! tensor_converter ! \ tensor_filter framework=neuronsdk model=/usr/bin/nnstreamer-demo/yolov5s-int8.dla inputtype=uint8 input=3:320:320:1 outputtype=uint8 output=85:6300:1 ! \ other/tensors,num_tensors=1,types=uint8,dimensions=85:6300:1:1,format=static ! \ tensor_transform mode=arithmetic option=typecast:float32,add:-4.0,mul:0.0051498096 ! \ tensor_decoder mode=bounding_boxes option1=yolov5 option2=/usr/bin/nnstreamer-demo/coco.txt option3=0 option4=640:480 option5=320:320 ! queue leaky=2 max-size-buffers=2 ! mix.
Pose Estimation
Python script:
/usr/bin/nnstreamer-demo/nnstreamer_example_pose_estimation_uvc.py
Model: posenet_mobilenet_v1_100_257x257_multi_kpt_stripped.tflite
Run example:
Execute on MDLA by neuronsdk:
ENGINE=neuronsdk python3 /usr/bin/nnstreamer-demo/nnstreamer_example_pose_estimation_uvc.py --cam $CAMERA_NODE_ID --engine $ENGINE --performance $PLATFORM
Execute on CPU:
ENGINE=tflite python3 /usr/bin/nnstreamer-demo/nnstreamer_example_pose_estimation_uvc.py --cam $CAMERA_NODE_ID --engine $ENGINE --performance $PLATFORM
Execute on GPU by ArmNN delegate:
ENGINE=armnn python3 /usr/bin/nnstreamer-demo/nnstreamer_example_pose_estimation_uvc.py --cam $CAMERA_NODE_ID --engine $ENGINE --performance $PLATFORM
Average inference time
CPU
ARMNN GPU
MDLA
NNAPI(VPU)
Genio-1200
42
16.5
6.5
Not support
Genio-700
50
25
6.5
Not support
Genio-350
180
115.3
Not support
Not support
Pipeline graph:
Below is the gstreamer command and pipeline graph constructed in the example:
nnstreamer_example_pose_estimation_uvc.py
using--engine neuronsdk
. The pipeline graph is generated through thegst-report
command ofgst-instruments
. Detailed command can be found in Pipeline Profiling:gst-launch-1.0 \ v4l2src name=src device=/dev/video5 io-mode=mmap num-buffers=300 ! video/x-raw,width=640,height=480,format=YUY2 ! tee name=t_raw \ t_raw. ! queue leaky=2 max-size-buffers=10 ! compositor name=mix sink_0::zorder=1 sink_1::zorder=2 ! fpsdisplaysink sync=false video-sink="waylandsink sync=false fullscreen=0" \ t_raw. ! queue leaky=2 max-size-buffers=2 ! videoconvert ! videoscale ! video/x-raw,width=257,height=257,format=RGB ! tensor_converter ! tensor_transform mode=arithmetic option=typecast:float32,add:-127.5,div:127.5 ! queue ! \ tensor_filter framework=neuronsdk model=/usr/bin/nnstreamer-demo/posenet_mobilenet_v1_100_257x257_multi_kpt_stripped.dla inputtype=float32 input=3:257:257:1 outputtype=float32,float32,float32,float32 output=17:9:9:1,34:9:9:1,32:9:9:1,32:9:9:1 ! queue ! \ tensor_decoder mode=pose_estimation option1=640:480 option2=257:257 option3=/usr/bin/nnstreamer-demo/point_labels.txt option4=heatmap-offset ! queue leaky=2 max-size-buffers=2 ! mix.
Face Detection
Python script:
/usr/bin/nnstreamer-demo/nnstreamer_example_face_detection_uvc.py
Model: detect_face.tflite
Run example:
Execute on MDLA by neuronsdk:
ENGINE=neuronsdk python3 /usr/bin/nnstreamer-demo/nnstreamer_example_face_detection_uvc.py --cam $CAMERA_NODE_ID --engine $ENGINE --performance $PLATFORM
Execute on CPU:
ENGINE=tflite python3 /usr/bin/nnstreamer-demo/nnstreamer_example_face_detection_uvc.py --cam $CAMERA_NODE_ID --engine $ENGINE --performance $PLATFORM
Execute on GPU by ArmNN delegate:
ENGINE=armnn python3 /usr/bin/nnstreamer-demo/nnstreamer_example_face_detection_uvc.py --cam $CAMERA_NODE_ID --engine $ENGINE --performance $PLATFORM
Average inference time
CPU
ARMNN GPU
MDLA
NNAPI(VPU)
Genio-1200
52
23.4
6.8
Not support
Genio-700
60
31
9.1
Not support
Genio-350
237
113.2
Not support
Not support
Pipeline graph:
Below is the gstreamer command and pipeline graph constructed in the example:
nnstreamer_example_pose_estimation_uvc.py
using--engine neuronsdk
. The pipeline graph is generated through thegst-report
command ofgst-instruments
. Detailed command can be found in Pipeline Profiling:gst-launch-1.0 \ v4l2src name=src device=/dev/video5 io-mode=mmap num-buffers=300 ! video/x-raw,width=640,height=480,format=YUY2 ! tee name=t_raw \ t_raw. ! queue leaky=2 max-size-buffers=10 ! videoconvert ! cairooverlay name=tensor_res ! fpsdisplaysink sync=false video-sink="waylandsink sync=false fullscreen=0" \ t_raw. ! queue leaky=2 max-size-buffers=2 ! videoconvert ! videoscale ! video/x-raw,width=300,height=300,format=RGB ! tensor_converter ! tensor_transform mode=arithmetic option=typecast:float32,add:-127.5,div:127.5 ! \ tensor_filter framework=neuronsdk model=/usr/bin/nnstreamer-demo/detect_face.dla inputtype=float32 input=3:300:300:1 outputtype=float32,float32 output=4:1:1917:1,2:1917:1 ! \ tensor_sink name=res_face
Low Light Image Enhancement
Python script:
/usr/bin/nnstreamer-demo/nnstreamer_example_low_light_image_enhancement.py
Model: lite-model_zero-dce_1.tflite
Run example:
This example does not read frames from a USB camera but inputs a PNG image and its width and height through option:
--img
,--width
and--height
. We have prepared a low-light photo (/usr/bin/nnstreamer-demo/original.png
) as an example, which was downloaded from this link:.The enhanced image will be stored in the path:
/usr/bin/nnstreamer-demo
and named aslow_light_enhancement_${backend}.png
, you can also use the option:--export
to name the enhanced image.Below is all options of this example:
python3 /usr/bin/nnstreamer-demo/nnstreamer_example_low_light_image_enhancement.py --help usage: nnstreamer_example_low_light_image_enhancement.py [-h] [--engine {neuronsdk,tflite,armnn}] [--img IMG] [--export EXPORT] [--width WIDTH] [--height HEIGHT] [--performance {NA,G1200,G700,G350}] options: -h, --help show this help message and exit --engine {neuronsdk,tflite,armnn} Choose a backends to inference. Default: neuronsdk --img IMG Input a image file path . Example: /usr/bin/nnstreamer-demo/original.png --export EXPORT Input a filename for the saved png image Example: low_light_enhancement --width WIDTH Input image file width, ex: 600 --height HEIGHT Input image file height, ex: 400 --performance {NA,G1200,G700,G350} Select platform and make CPU/GPU/APU run under performance mode, ex: G1200
Before running example, set global variables for input image
IMAGE=/usr/bin/nnstreamer-demo/original.png IMAGE_WIDTH=600 IMAGE_HEIGHT=400
Execute on MDLA by neuronsdk:
ENGINE=neuronsdk python3 /usr/bin/nnstreamer-demo/nnstreamer_example_low_light_image_enhancement.py --img $IMAGE --engine $ENGINE --width $IMAGE_WIDTH --height $IMAGE_HEIGHT --performance $PLATFORM
Execute on CPU:
ENGINE=tflite python3 /usr/bin/nnstreamer-demo/nnstreamer_example_low_light_image_enhancement.py --img $IMAGE --engine $ENGINE --width $IMAGE_WIDTH --height $IMAGE_HEIGHT --performance $PLATFORM
Execute on GPU by ArmNN delegate:
ENGINE=armnn python3 /usr/bin/nnstreamer-demo/nnstreamer_example_low_light_image_enhancement.py --img $IMAGE --engine $ENGINE --width $IMAGE_WIDTH --height $IMAGE_HEIGHT --performance $PLATFORM
Note
You will fail to run
nnstreamer-demo/nnstreamer_example_low_light_image_enhancement.py
with--engine armnn
because operatorSQUARE
is not supported by Arm NN.python3 /usr/bin/nnstreamer-demo/nnstreamer_example_low_light_image_enhancement.py --img /usr/bin/nnstreamer-demo/original.png --engine armnn --width 600 --height 400 --performance G700 ... INFO: TfLiteArmnnDelegate: Created TfLite ArmNN delegate. ERROR: Operator SQUARE [92] is not supported by armnn_delegate. ...
Average inference time
CPU
ARMNN GPU
MDLA
NNAPI
Genio-1200
644
Not support
79
Not support
Genio-700
765
Not support
74
Not support
Genio-350
3636
Not support
Not support
Not support
Pipeline graph:
Below is the gstreamer command and pipeline graph constructed in the example:
nnstreamer_example_pose_estimation_uvc.py
using--engine neuronsdk
. The pipeline graph is generated through thegst-report
command ofgst-instruments
. Detailed command can be found in Pipeline Profiling:gst-launch-1.0 \ filesrc location=/usr/bin/nnstreamer-demo/original.png ! pngdec ! videoscale ! videoconvert ! video/x-raw,width=600,height=400,format=RGB ! \ tensor_converter ! tensor_transform mode=arithmetic option=typecast:float32,add:0,div:255.0 ! \ tensor_filter framework=neuronsdk model=/usr/bin/nnstreamer-demo/lite-model_zero-dce_1.dla inputtype=float32 input=3:600:400:1 outputtype=float32 output=3:600:400:1 ! \ tensor_sink name=tensor_sink
Performance
NNStreamer::tensor_filter Invoke Time
By default, the NNStreamer does not show tensor_filter
invoke time (inference time) on the screen, but we can find this information by enabling tensor_filter
property: latency
.
According to the source code of tensor_filter
, the definition of the property: latency is
Turn on performance profiling for the average latency over the recent 10 inferences in microseconds.
Currently, this accepts either 0 (OFF) or 1 (ON).
For enabling latency
, currently, we have to modify the python script directly to add the property: latency=1
to the tensor_filter
.
Take nnstreamer_example_image_classification_uvc.py
as example:
Step.1: Open python script:
nnstreamer_example_image_classification_uvc.py
Step.2: Search for
tensor_filter
and addlatency=1
after it.if engine == 'neuronsdk': tensor = dla_converter(self.tflite_model, self.dla) cmd += f'tensor_filter framework=neuronsdk model={self.dla} {tensor} ! ' elif engine == 'tflite': cpu_cores = find_cpu_cores() cmd += f'tensor_filter latency=1 framework=tensorflow-lite model={self.tflite_model} custom=NumThreads:{cpu_cores} ! ' elif engine == 'armnn': library = find_armnn_delegate_library() cmd += f'tensor_filter latency=1 framework=tensorflow-lite model={self.tflite_model} custom=Delegate:External,ExtDelegateLib:{library},ExtDelegateKeyVal:backends#GpuAcc ! ' elif engine == 'nnapi': library = find_armnn_delegate_library() cmd += f'tensor_filter latency=1 framework=tensorflow-lite model={self.tflite_model} custom=Delegate:External,ExtDelegateLib:/usr/lib/nnapi_external_delegate.so ! '
Step.3: Then save python script.
Step.4: Enable glib log by set global variable:
export G_MESSAGES_DEBUG=all
Step.4: Run the example, then you can find the following log:
Invoke took 2.537 ms
, which is the inference time.CAMERA_NODE_ID=5 PLATFORM=G700 ENGINE=neuronsdk python3 /usr/bin/nnstreamer-demo/nnstreamer_example_image_classification_uvc.py --cam $CAMERA_NODE_ID --engine $ENGINE --performance $PLATFORM ... ... ** INFO: 03:16:01.589: [/usr/bin/nnstreamer-demo/mobilenet_v1_1.0_224_quant.dla] Invoke took 2.537 ms ... ...
Pipeline Profiling
In the NNstreamer online document: Profiling, nnstreamer recommends users to use NNShark or
gst-instrument for performance analysis of the pipeline.
For now, NNShark
is not available on IoT Yocto, but gst-instrument
is already included in the IoT Yocto rity-demo-image.
gst-instrument
is set of performance profiling and data flow inspection tools for GStreamer pipelines. It provides:
gst-top-1.0
:Displays performance report for each element in piepline.
gst-top-1.0 \ gst-launch-1.0 \ v4l2src name=src device=/dev/video5 io-mode=mmap num-buffers=300 ! video/x-raw,width=640,height=480,format=YUY2 ! tee name=t_raw t_raw. ! queue leaky=2 max-size-buffers=10 ! \ ... Got EOS from element "pipeline0". Execution ended after 0:00:10.221403924 Setting pipeline to NULL ... Freeing pipeline ... ELEMENT %CPU %TIME TIME videoconvert0 13.8 55.3 1.41 s videoscale0 3.7 14.9 379 ms tensortransform0 2.2 9.0 228 ms fps-display-text-overlay 2.0 8.1 207 ms tensordecoder0 0.7 2.8 71.9 ms tensorfilter0 0.6 2.3 59.5 ms ...
And save performance data as a file called
gst-top.gsttrace
ls -al *.gsttrace -rw-r--r-- 1 root root 11653120 Jan 4 05:23 gst-top.gsttrace
gst-report
:Generate performance graph in DOT format:
gst-report-1.0 --dot gst-top.gsttrace | dot -Tsvg > perf.svg
Below is the performance graph of
nnstreamer_example_object_detection_uvc.py
. It shows CPU usage, time usage, and execution time among the elements. We can easily find who spends CPU resource mostly, who spends more time to execution.For example, as shown in the following figure,
tensor_transform
consumed 56.9% of the total execution time becausetensor_transform
processes the conversion of buffer data using the CPU.