People Semantic Segmenation
Introduction
In this tutorial, we will guide you through the steps to take the PeopleSemSegnet AMR Model from the NVIDIA NGC hub, convert the ONNX model to TFLite format, quantize and execute them on the TFLite benchmark model. We will demonstrate two conversion methods: using the open-source onnx2tf tool and MediaTek’s proprietary mtk-converter. Finally, we will showcase a demo video of an application created using the same model.
Prerequisites
Before you begin, ensure you have the following installed:
Python 3.11
ONNX v1.13
onnxruntime v1.17.1
TensorFlow v2.14
onnx2tf
Neuropilot Converter 8.10
NVIDIA TAO Toolkit (v5.5)
Download the Model
First, download the People Semantic Segmentation AMR REL model from the NVIDIA NGC hub.
wget --content-disposition 'https://api.ngc.nvidia.com/v2/models/org/nvidia/team/tao/peoplesemsegnet_amr/deployable_v1.1/files?redirect=true&path=peoplesemsegnet_amr_rel.onnx' -O peoplesemsegnet_amr_rel.onnx
Model Analysis
The downloaded model has dynamic inputs, which need to be made static for conversion. Below is a visualization of the model using Netron.
To make the inputs static, you can use the following onnxruntime command:
python -m onnxruntime.tools.make_dynamic_shape_fixed --input_name inputs --input_shape 1,3,544,960 peoplesemsegnet_amr_rel.onnx peoplesemsegnet_amr_rel_fixed.onnx
You can now see that that the dynamic inputs have become static
Convert ONNX Model to TFLite
We will demonstrate two methods to convert the ONNX model to TFLite format.
Method 1: Using onnx2tf
onnx2tf is an open-source tool that converts ONNX models to TensorFlow Lite models. It is designed to be easy to use and supports a wide range of ONNX operators. This method is suitable for users who prefer open-source solutions and want to leverage the flexibility of TensorFlow Lite.
Install onnx2tf:
pip3 install onnx2tf
Remove suffixes from ONNX model:
import onnx import sys def remove_suffix_from_names(model_path, output_model_path, suffix=':0'): # Load the ONNX model onnx_model = onnx.load(model_path) # Get input and output names to remove the suffix from graph_input_names = [input.name for input in onnx_model.graph.input] graph_output_names = [output.name for output in onnx_model.graph.output] print('graph_input_names =', graph_input_names) print('graph_output_names =', graph_output_names) # Remove suffix from input names for input in onnx_model.graph.input: input.name = input.name.removesuffix(suffix) # Remove suffix from output names for output in onnx_model.graph.output: output.name = output.name.removesuffix(suffix) # Remove suffix from node input and output names for node in onnx_model.graph.node: for i in range(len(node.input)): if node.input[i] in graph_input_names: node.input[i] = node.input[i].removesuffix(suffix) for i in range(len(node.output)): if node.output[i] in graph_output_names: node.output[i] = node.output[i].removesuffix(suffix) # Save the modified ONNX model onnx.save(onnx_model, output_model_path) if __name__ == "__main__": if len(sys.argv) != 3: print("Usage: python3 script.py <input_model.onnx> <output_model.onnx>") sys.exit(1) input_model_path = sys.argv[1] output_model_path = sys.argv[2] remove_suffix_from_names(input_model_path, output_model_path)
use the above script as python3 script.py peoplesemsegnet_amr_rel_fixed.onnx peoplesemsegnet_amr_rel_mod.onnx
Convert the Model to TF:
onnx2tf -i peoplesemsegnet_amr_rel_mod.onnx -oiqt
This will generate the TF saved_model which can be further used for quantization using MLIR.
Convert and Quantize the Model to TFLite:
We can use the generated TF saved_model and convert it to TFLite using the TFLite converter.
import tensorflow as tf import numpy as np tf_model_path = '/path/to/saved_model' tflite_model_path = 'peoplesemsegnet_amr_rel.tflite' # Generate representative dataset def representative_dataset(): data = tf.random.uniform((1,544,960,3)) yield [data] converter = tf.lite.TFLiteConverter.from_saved_model(tf_model_path) converter.optimizations = [tf.lite.Optimize.DEFAULT] # ================================================================ # To quantize the model, add the below snippet converter.representative_dataset = representative_dataset() converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] converter.inference_input_type = tf.int8 ## Can be tf.uint8, or tf.float32 or tf.float16 # converter.inference_output_type = tf.int8 ## Can be tf.uint8, tf.float32 or tf.fp16. We keep it float32 for ease of post-processing output data # DO NOTE: THE MODEL OUTPUTS WILL ALWAYS BE INT64 # ================================================================ tflite_model = converter.convert() with open(tflite_model_path, "wb") as f: f.write(tflite_model)
Method 2: Using mtk-converter
mtk-converter is MediaTek’s proprietary tool for converting ONNX models to TFLite format. It is optimized for MediaTek’s hardware and provides additional features for model optimization and deployment. This method is recommended for users who are deploying models on MediaTek platforms and want to take advantage of MediaTek’s AI-ML solutions.
Install mtk-converter
Follow the instructions to download and install the mtk-converter tool from the official NeuroPilot documentation. Install the mtk-converter tool inside a Python v3.11 virtual environment.
# Steps to start a Python virtual environment and install the mtk_converter wheel file in your Linux environment sudo apt install python3.11-venv mkdir NP8 python3.11 -m venv NP8/ source NP8/bin/activate # This starts your virtual environment pip install mtk_converter*.whl # Install the compatible mtk-converter wheel file. It would be part of the downloaded NP package. pip install <required_dependencies> # Install the dependencies as mentioned in the Neuropilot documentation
Convert Input and Output to NHWC Data Format:
The mtk-converter by default will introduce a transpose operation to the converted TFLite model to convert ONNX NCHW data format to NHWC format preferred by TensorFlow. This might introduce overhead during execution. To avoid this overhead, we will first insert ‘transpose’ operations to the input and output operations and then continue with our model conversion and quantization.
import onnx # The provided model has one input and two outputs def add_transpose(model_proto, nhwc_input_shape, nhwc_output_shape): input_nhwc = onnx.helper.make_tensor_value_info('input_nhwc', onnx.TensorProto.FLOAT, nhwc_input_shape) input_transpose_node = onnx.helper.make_node('Transpose', ['input_nhwc'], ['input_2:0'], perm=[0,3,1,2]) model_proto.graph.node.insert(0, input_transpose_node) output_transpose_node = onnx.helper.make_node('Transpose', ['argmax_1'], ['output_nhwc'], perm=[0,2,3,1]) model_proto.graph.node.append(output_transpose_node) model_proto.graph.input.pop(0) model_proto.graph.input.insert(0, input_nhwc) model_proto.graph.output.pop(0) model_proto.graph.output.insert(0, output_nhwc) onnx.checker.check_model(model_proto) return model_proto model_proto = onnx.load('peoplesemsegnet_amr_rel_fixed.onnx') nhwc_input_shape = [1,544,960,3] nhwc_output_shape = [1,544,960,1] model_proto_nhwc = add_transpose(model_proto, nhwc_input_shape, nhwc_output_shape) onnx.save(model_proto_nhwc, 'peoplesemsegnet_amr_rel_nhwc.onnx')
We can see in the image below that the ONNX model now has NHWC inputs and outputs
Convert NHWC ONNX Model to TFLite
This part of the conversion consists of two steps:
Version Conversion: TAO ONNX models have IR version 9 and above, whereas mtk-converter supports ONNX models having IR version 3 to 8. So we convert the ONNX IR version to 8.
# The provided code snippet by default will convert to IR8. You can choose to convert it to any IR version between versions 3 to 8 import onnx from onnx import version_converter def convert_ir_version(input_model_path, target_ir_version=8): original_model = onnx.load(input_model_path) original_model.ir_version = target_ir_version output_model_path = 'converted_onnx.onnx' onnx.save(original_model, output_model_path) convert_ir_version('path_to_onnx_model')
Convert to TFLite: The following code snippets convert the generated ONNX model with IR v8 to TFLite.
import onnx import mtk_converter import numpy as np def convert_to_tflite(input_model_path, output_model_path): onnx_model = onnx.load(input_model_path) # Load ONNX model to obtain input shape of model to create representative dataset for quantization. # We quantize as part of model conversion by default in this code snippet. You can choose to not quantize. input_tensor = onnx_model.graph.input[0] input_shape = [dim.dim_value for dim in input_tensor.type.tensor_type.shape.dim] def data_gen(input_shape): for i in range(10): yield [np.random.randn(*input_shape).astype(np.float32)] # Create the converter converter = mtk_converter.OnnxConverter.from_model_proto_file(input_model_path) # Set quantizer to True converter.quantize = True converter.calibration_data_gen = lambda: data_gen(input_shape) # If you want the model to remain in float, you can choose to uncomment precision_proportion # ===================================================== # converter.precision_proportion = {'FP': 1.0} # ===================================================== # Uncomment to set precision proportion to INT8 # converter.precision_proportion = {'8W8A': 1.0} # Uncomment with precision proportion to set input data type as FP32 # converter.prepend_input_quantize_ops = True # Uncomment with precision proportion to set output data type as FP32 # converter.append_output_dequantize_ops = True converter.use_per_output_channel_quantization=False _ = converter.convert_to_tflite(output_file=output_model_path) input_model_path = 'converted_onnx.onnx' output_model_path = 'peoplesemsegnet_amr_rel.tflite' # Convert to TFLite and save to the provided output path convert_to_tflite(input_model_path, output_model_path)
We can see the NP converted TFLite model visualized over netron below
Model Execution
Use the TFLite benchmark model tool to execute the quantized model and measure its performance.
benchmark_model is provided in Tensorflow Performance Measurement for performance evaluation.
Commands for executing the benchmark tool with CPU and different delegates are as follows.
Execute on CPU (8 threads):
benchmark_model --graph=peoplesemsegnet_amr_rel.tflite --num_threads=8 --num_runs=10
Execute on GPU, with GPU delegate:
benchmark_model --graph=peoplesemsegnet_amr_rel.tflite --use_gpu=1 --allow_fp16=0 --gpu_precision_loss_allowed=0 --num_runs=10
Execute on GPU, with Arm NN delegate:
benchmark_model --graph=peoplesemsegnet_amr_rel.tflite --external_delegate_path=/usr/lib/libarmnnDelegate.so.29 --external_delegate_options="backends:GpuAcc,CpuAcc" --num_runs=10
Execute on NPU, with NPU LiteRT delegate:
benchmark_model --graph=peoplesemsegnet_amr_rel.tflite --stable_delegate_settings_file=/usr/share/label_image/--stable_delegate_settings.json
The following table shows the inference times (in milliseconds) for the converted peoplesemsegnet_amr_rel.tflite TFLite model running on the Genio 700 platform.
Model |
CPU (1 thread) |
GPU |
NPU LiteRT delegate |
---|---|---|---|
109.6 |
100.7 |
10.3 |
Demo Example
Application Control Flow Stack Diagram
Below we show the Application Control Flow of the demo example. The example makes use of our advanced MDP, GPU, and NPU capabilities.
Application Demo Video
The below application performs people semantic segmentation at a crosswalk intersection.
Conclusion
In this tutorial, we demonstrated how to take the People Semantic Segmentation from the NVIDIA NGC hub, convert it to TFLite format using two different methods, quantize the model, and execute it on the TFLite benchmark model. We also showcased a demo video of an application created using the same model. This process highlights the flexibility and efficiency of using the NVIDIA TAO Toolkit and MediaTek’s Neuropilot solutions for deploying AI-ML models at the edge.