People Semantic Segmenation

Introduction

In this tutorial, we will guide you through the steps to take the PeopleSemSegnet AMR Model from the NVIDIA NGC hub, convert the ONNX model to TFLite format, quantize and execute them on the TFLite benchmark model. We will demonstrate two conversion methods: using the open-source onnx2tf tool and MediaTek’s proprietary mtk-converter. Finally, we will showcase a demo video of an application created using the same model.

Prerequisites

Before you begin, ensure you have the following installed:

  • Python 3.11

  • ONNX v1.13

  • onnxruntime v1.17.1

  • TensorFlow v2.14

  • onnx2tf

  • Neuropilot Converter 8.10

  • NVIDIA TAO Toolkit (v5.5)

Download the Model

First, download the People Semantic Segmentation AMR REL model from the NVIDIA NGC hub.

wget --content-disposition 'https://api.ngc.nvidia.com/v2/models/org/nvidia/team/tao/peoplesemsegnet_amr/deployable_v1.1/files?redirect=true&path=peoplesemsegnet_amr_rel.onnx' -O peoplesemsegnet_amr_rel.onnx

Model Analysis

The downloaded model has dynamic inputs, which need to be made static for conversion. Below is a visualization of the model using Netron.

PeopleSemSegNet AMR REL ONNX Model

PeopleSemSegNet_AMR_REL ONNX Model

To make the inputs static, you can use the following onnxruntime command:

python -m onnxruntime.tools.make_dynamic_shape_fixed --input_name inputs --input_shape 1,3,544,960 peoplesemsegnet_amr_rel.onnx peoplesemsegnet_amr_rel_fixed.onnx

You can now see that that the dynamic inputs have become static

PeopleSemSegNet_AMR_REL Fixed ONNX Model

PeopleSemSegNet AMR REL ONNX model fixed

Convert ONNX Model to TFLite

We will demonstrate two methods to convert the ONNX model to TFLite format.

Method 1: Using onnx2tf

onnx2tf is an open-source tool that converts ONNX models to TensorFlow Lite models. It is designed to be easy to use and supports a wide range of ONNX operators. This method is suitable for users who prefer open-source solutions and want to leverage the flexibility of TensorFlow Lite.

  1. Install onnx2tf:

    pip3 install onnx2tf
    
  2. Remove suffixes from ONNX model:

    import onnx
    import sys
    
    def remove_suffix_from_names(model_path, output_model_path, suffix=':0'):
        # Load the ONNX model
        onnx_model = onnx.load(model_path)
    
        # Get input and output names to remove the suffix from
        graph_input_names = [input.name for input in onnx_model.graph.input]
        graph_output_names = [output.name for output in onnx_model.graph.output]
    
        print('graph_input_names =', graph_input_names)
        print('graph_output_names =', graph_output_names)
    
        # Remove suffix from input names
        for input in onnx_model.graph.input:
            input.name = input.name.removesuffix(suffix)
    
        # Remove suffix from output names
        for output in onnx_model.graph.output:
            output.name = output.name.removesuffix(suffix)
    
        # Remove suffix from node input and output names
        for node in onnx_model.graph.node:
            for i in range(len(node.input)):
                if node.input[i] in graph_input_names:
                    node.input[i] = node.input[i].removesuffix(suffix)
    
            for i in range(len(node.output)):
                if node.output[i] in graph_output_names:
                    node.output[i] = node.output[i].removesuffix(suffix)
    
        # Save the modified ONNX model
        onnx.save(onnx_model, output_model_path)
    
    if __name__ == "__main__":
        if len(sys.argv) != 3:
            print("Usage: python3 script.py <input_model.onnx> <output_model.onnx>")
            sys.exit(1)
    
        input_model_path = sys.argv[1]
        output_model_path = sys.argv[2]
    
        remove_suffix_from_names(input_model_path, output_model_path)
    

    use the above script as python3 script.py peoplesemsegnet_amr_rel_fixed.onnx peoplesemsegnet_amr_rel_mod.onnx

  3. Convert the Model to TF:

    onnx2tf -i peoplesemsegnet_amr_rel_mod.onnx -oiqt
    

    This will generate the TF saved_model which can be further used for quantization using MLIR.

  4. Convert and Quantize the Model to TFLite:

    We can use the generated TF saved_model and convert it to TFLite using the TFLite converter.

    import tensorflow as tf
    import numpy as np
    
    tf_model_path = '/path/to/saved_model'
    tflite_model_path = 'peoplesemsegnet_amr_rel.tflite'
    
    # Generate representative dataset
    def representative_dataset():
        data = tf.random.uniform((1,544,960,3))
        yield [data]
    
    converter = tf.lite.TFLiteConverter.from_saved_model(tf_model_path)
    converter.optimizations = [tf.lite.Optimize.DEFAULT]
    
    # ================================================================
    # To quantize the model, add the below snippet
    
    converter.representative_dataset = representative_dataset()
    converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
    converter.inference_input_type = tf.int8  ## Can be tf.uint8, or tf.float32 or tf.float16
    # converter.inference_output_type = tf.int8  ## Can be tf.uint8, tf.float32 or tf.fp16. We keep it float32 for ease of post-processing output data
    
    # DO NOTE: THE MODEL OUTPUTS WILL ALWAYS BE INT64
    # ================================================================
    
    tflite_model = converter.convert()
    
    with open(tflite_model_path, "wb") as f:
        f.write(tflite_model)
    
PeopleSemSegNet AMR REL TFLite Model

PeopleSemSegNet AMR Rel TFLite Model

Method 2: Using mtk-converter

mtk-converter is MediaTek’s proprietary tool for converting ONNX models to TFLite format. It is optimized for MediaTek’s hardware and provides additional features for model optimization and deployment. This method is recommended for users who are deploying models on MediaTek platforms and want to take advantage of MediaTek’s AI-ML solutions.

  1. Install mtk-converter

    Follow the instructions to download and install the mtk-converter tool from the official NeuroPilot documentation. Install the mtk-converter tool inside a Python v3.11 virtual environment.

    # Steps to start a Python virtual environment and install the mtk_converter wheel file in your Linux environment
    sudo apt install python3.11-venv
    mkdir NP8
    python3.11 -m venv NP8/
    source NP8/bin/activate  # This starts your virtual environment
    pip install mtk_converter*.whl  # Install the compatible mtk-converter wheel file. It would be part of the downloaded NP package.
    pip install <required_dependencies>  # Install the dependencies as mentioned in the Neuropilot documentation
    
  2. Convert Input and Output to NHWC Data Format:

    The mtk-converter by default will introduce a transpose operation to the converted TFLite model to convert ONNX NCHW data format to NHWC format preferred by TensorFlow. This might introduce overhead during execution. To avoid this overhead, we will first insert ‘transpose’ operations to the input and output operations and then continue with our model conversion and quantization.

    import onnx
    
    # The provided model has one input and two outputs
    def add_transpose(model_proto, nhwc_input_shape, nhwc_output_shape):
    
        input_nhwc = onnx.helper.make_tensor_value_info('input_nhwc', onnx.TensorProto.FLOAT, nhwc_input_shape)
    
        input_transpose_node = onnx.helper.make_node('Transpose', ['input_nhwc'], ['input_2:0'], perm=[0,3,1,2])
        model_proto.graph.node.insert(0, input_transpose_node)
    
        output_transpose_node = onnx.helper.make_node('Transpose', ['argmax_1'], ['output_nhwc'], perm=[0,2,3,1])
        model_proto.graph.node.append(output_transpose_node)
    
        model_proto.graph.input.pop(0)
        model_proto.graph.input.insert(0, input_nhwc)
    
        model_proto.graph.output.pop(0)
        model_proto.graph.output.insert(0, output_nhwc)
    
        onnx.checker.check_model(model_proto)
        return model_proto
    
    model_proto = onnx.load('peoplesemsegnet_amr_rel_fixed.onnx')
    nhwc_input_shape = [1,544,960,3]
    nhwc_output_shape = [1,544,960,1]
    
    model_proto_nhwc = add_transpose(model_proto, nhwc_input_shape, nhwc_output_shape)
    
    onnx.save(model_proto_nhwc, 'peoplesemsegnet_amr_rel_nhwc.onnx')
    

    We can see in the image below that the ONNX model now has NHWC inputs and outputs

    PeopleSemSegNet AMR REL NHWC ONNX Model

    PeopleSemSegNet AMR Rel NHWC ONNX Model

  3. Convert NHWC ONNX Model to TFLite

    This part of the conversion consists of two steps:

    1. Version Conversion: TAO ONNX models have IR version 9 and above, whereas mtk-converter supports ONNX models having IR version 3 to 8. So we convert the ONNX IR version to 8.

    # The provided code snippet by default will convert to IR8. You can choose to convert it to any IR version between versions 3 to 8
    
    import onnx
    from onnx import version_converter
    
    def convert_ir_version(input_model_path, target_ir_version=8):
    
        original_model = onnx.load(input_model_path)
        original_model.ir_version = target_ir_version
        output_model_path = 'converted_onnx.onnx'
        onnx.save(original_model, output_model_path)
    
    convert_ir_version('path_to_onnx_model')
    
    1. Convert to TFLite: The following code snippets convert the generated ONNX model with IR v8 to TFLite.

    import onnx
    import mtk_converter
    import numpy as np
    
    def convert_to_tflite(input_model_path, output_model_path):
    
        onnx_model = onnx.load(input_model_path)
    
        # Load ONNX model to obtain input shape of model to create representative dataset for quantization.
        # We quantize as part of model conversion by default in this code snippet. You can choose to not quantize.
    
        input_tensor = onnx_model.graph.input[0]
        input_shape = [dim.dim_value for dim in input_tensor.type.tensor_type.shape.dim]
    
        def data_gen(input_shape):
            for i in range(10):
                yield [np.random.randn(*input_shape).astype(np.float32)]
    
        # Create the converter
        converter = mtk_converter.OnnxConverter.from_model_proto_file(input_model_path)
        # Set quantizer to True
        converter.quantize = True
        converter.calibration_data_gen = lambda: data_gen(input_shape)
    
        # If you want the model to remain in float, you can choose to uncomment precision_proportion
        # =====================================================
        # converter.precision_proportion = {'FP': 1.0}
        # =====================================================
    
        # Uncomment to set precision proportion to INT8
        # converter.precision_proportion = {'8W8A': 1.0}
    
        # Uncomment with precision proportion to set input data type as FP32
        # converter.prepend_input_quantize_ops = True
    
        # Uncomment with precision proportion to set output data type as FP32
        # converter.append_output_dequantize_ops = True
    
        converter.use_per_output_channel_quantization=False
        _ = converter.convert_to_tflite(output_file=output_model_path)
    
    input_model_path = 'converted_onnx.onnx'
    output_model_path = 'peoplesemsegnet_amr_rel.tflite'
    
    # Convert to TFLite and save to the provided output path
    convert_to_tflite(input_model_path, output_model_path)
    

    We can see the NP converted TFLite model visualized over netron below

    PeopleSemSegNet AMR REL NP TFLite Model

    PeopleSemSegNet AMR Rel NP TFLite Model

Model Execution

Use the TFLite benchmark model tool to execute the quantized model and measure its performance.

benchmark_model is provided in Tensorflow Performance Measurement for performance evaluation.

Commands for executing the benchmark tool with CPU and different delegates are as follows.

  • Execute on CPU (8 threads):

benchmark_model --graph=peoplesemsegnet_amr_rel.tflite --num_threads=8 --num_runs=10
  • Execute on GPU, with GPU delegate:

benchmark_model --graph=peoplesemsegnet_amr_rel.tflite --use_gpu=1 --allow_fp16=0 --gpu_precision_loss_allowed=0 --num_runs=10
  • Execute on GPU, with Arm NN delegate:

benchmark_model --graph=peoplesemsegnet_amr_rel.tflite --external_delegate_path=/usr/lib/libarmnnDelegate.so.29 --external_delegate_options="backends:GpuAcc,CpuAcc" --num_runs=10
  • Execute on NPU, with NPU LiteRT delegate:

benchmark_model --graph=peoplesemsegnet_amr_rel.tflite --stable_delegate_settings_file=/usr/share/label_image/--stable_delegate_settings.json

The following table shows the inference times (in milliseconds) for the converted peoplesemsegnet_amr_rel.tflite TFLite model running on the Genio 700 platform.

Inference Times on Genio 700

Model

CPU (1 thread)

GPU

NPU LiteRT delegate

PeopleSemSegNet_AMR_Rel

109.6

100.7

10.3

Demo Example

Application Control Flow Stack Diagram

Below we show the Application Control Flow of the demo example. The example makes use of our advanced MDP, GPU, and NPU capabilities.

Application Control Flow

Retail Object Recognition Application Control Flow

Application Demo Video

The below application performs people semantic segmentation at a crosswalk intersection.

Semantic Segmentation

Conclusion

In this tutorial, we demonstrated how to take the People Semantic Segmentation from the NVIDIA NGC hub, convert it to TFLite format using two different methods, quantize the model, and execute it on the TFLite benchmark model. We also showcased a demo video of an application created using the same model. This process highlights the flexibility and efficiency of using the NVIDIA TAO Toolkit and MediaTek’s Neuropilot solutions for deploying AI-ML models at the edge.