.. include:: /keyword.rst ================= ONNX Runtime Demo ================= The following examples demonstrate how to execute image classification tasks using the ``label_image.py`` script on Genio platforms. CPU-Based Inference =================== The following command executes an EfficientNet-Lite4 ONNX model on a Genio platform using the CPU. .. prompt:: bash # auto # python3 label_image.py -i kitten.jpg -l labels.txt -m model.onnx --execution_provider CPUExecutionProvider **Example Output:** .. code-block:: text 0.88291174 281: 'tabby cat' 0.09353886 285: 'Egyptian cat' Time: 103.599ms NPU-Accelerated Inference ========================= The developer can offload inference to the NPU by specifying the ``NeuronExecutionProvider`` and providing the mandatory hardware flags. .. prompt:: bash # auto # python3 label_image.py -i kitten.jpg -l labels.txt -m model.onnx \ --execution_provider NeuronExecutionProvider \ --neuron_flag_use_fp16 1 \ --neuron_flag_min_group_size 1 **Example Output:** .. code-block:: text 0.8833008 281: 'tabby cat' 0.0930786 285: 'Egyptian cat' Time: 13.100ms .. note:: As shown in the examples, NPU acceleration significantly reduces inference time (from ~103ms to ~13ms) compared to CPU execution on Genio platforms.